How unique is UUID?

2018-12-31 12:29发布

How safe is it to use UUID to uniquely identify something (I'm using it for files uploaded to the server)? As I understand it, it is based off random numbers. However, it seems to me that given enough time, it would eventually repeat it self, just by pure chance. Is there a better system or a pattern of some type to alleviate this issue?

10条回答
皆成旧梦
2楼-- · 2018-12-31 13:12

Very safe:

the annual risk of a given person being hit by a meteorite is estimated to be one chance in 17 billion, which means the probability is about 0.00000000006 (6 × 10−11), equivalent to the odds of creating a few tens of trillions of UUIDs in a year and having one duplicate. In other words, only after generating 1 billion UUIDs every second for the next 100 years, the probability of creating just one duplicate would be about 50%.

Caveat:

However, these probabilities only hold when the UUIDs are generated using sufficient entropy. Otherwise, the probability of duplicates could be significantly higher, since the statistical dispersion might be lower. Where unique identifiers are required for distributed applications, so that UUIDs do not clash even when data from many devices is merged, the randomness of the seeds and generators used on every device must be reliable for the life of the application. Where this is not feasible, RFC4122 recommends using a namespace variant instead.

Source: The Random UUID probability of duplicates section of the Wikipedia article on Universally unique identifiers (link leads to a revision from December 2016 before editing reworked the section).

Also see the current section on the same subject on the same Universally unique identifier article, Collisions.

查看更多
浮光初槿花落
3楼-- · 2018-12-31 13:15

Quoting from Wikipedia:

Thus, anyone can create a UUID and use it to identify something with reasonable confidence that the identifier will never be unintentionally used by anyone for anything else

It goes on to explain in pretty good detail on how safe it actually is. So to answer your question: Yes, it's safe enough.

查看更多
不再属于我。
4楼-- · 2018-12-31 13:20

There is more than one type of UUID, so "how safe" depends on which type (which the UUID specifications call "version") you are using.

  • Version 1 is the time based plus MAC address UUID. The 128-bits contains 48-bits for the network card's MAC address (which is uniquely assigned by the manufacturer) and a 60-bit clock with a resolution of 100 nanoseconds. That clock wraps in 3603 A.D. so these UUIDs are safe at least until then (unless you need more than 10 million new UUIDs per second or someone clones your network card). I say "at least" because the clock starts at 15 October 1582, so you have about 400 years after the clock wraps before there is even a small possibility of duplications.

  • Version 4 is the random number UUID. There's six fixed bits and the rest of the UUID is 122-bits of randomness. See Wikipedia or other analysis that describe how very unlikely a duplicate is.

  • Version 3 is uses MD5 and Version 5 uses SHA-1 to create those 122-bits, instead of a random or pseudo-random number generator. So in terms of safety it is like Version 4 being a statistical issue (as long as you make sure what the digest algorithm is processing is always unique).

  • Version 2 is similar to Version 1, but with a smaller clock so it is going to wrap around much sooner. But since Version 2 UUIDs are for DCE, you shouldn't be using these.

So for all practical problems they are safe. If you are uncomfortable with leaving it up to probabilities (e.g. your are the type of person worried about the earth getting destroyed by a large asteroid in your lifetime), just make sure you use a Version 1 UUID and it is guaranteed to be unique (in your lifetime, unless you plan to live past 3603 A.D.).

So why doesn't everyone simply use Version 1 UUIDs? That is because Version 1 UUIDs reveal the MAC address of the machine it was generated on and they can be predictable -- two things which might have security implications for the application using those UUIDs.

查看更多
看风景的人
5楼-- · 2018-12-31 13:24

Been doing it for years. Never run into a problem.

I usually set up my DB's to have one table that contains all the keys and the modified dates and such. Haven't run into a problem of duplicate keys ever.

The only drawback that it has is when you are writing some queries to find some information quickly you are doing a lot of copying and pasting of the keys. You don't have the short easy to remember ids anymore.

查看更多
栀子花@的思念
6楼-- · 2018-12-31 13:26

UUID schemes generally use not only a pseudo-random element, but also the current system time, and some sort of often-unique hardware ID if available, such as a network MAC address.

The whole point of using UUID is that you trust it to do a better job of providing a unique ID than you yourself would be able to do. This is the same rationale behind using a 3rd party cryptography library rather than rolling your own. Doing it yourself may be more fun, but it's typically less responsible to do so.

查看更多
千与千寻千般痛.
7楼-- · 2018-12-31 13:27

Here's a testing snippet for you to test it's uniquenes. inspired by @scalabl3's comment

Funny thing is, you could generate 2 in a row that were identical, of course at mind-boggling levels of coincidence, luck and divine intervention, yet despite the unfathomable odds, it's still possible! :D Yes, it won't happen. just saying for the amusement of thinking about that moment when you created a duplicate! Screenshot video! – scalabl3 Oct 20 '15 at 19:11

If you feel lucky, check the checkbox, it only checks the currently generated id's. If you wish a history check, leave it unchecked. Please note, you might run out of ram at some point if you leave it unchecked. I tried to make it cpu friendly so you can abort quickly when needed, just hit the run snippet button again or leave the page.

Math.log2 = Math.log2 || function(n){ return Math.log(n) / Math.log(2); }
  Math.trueRandom = (function() {
  var crypt = window.crypto || window.msCrypto;

  if (crypt && crypt.getRandomValues) {
      // if we have a crypto library, use it
      var random = function(min, max) {
          var rval = 0;
          var range = max - min;
          if (range < 2) {
              return min;
          }

          var bits_needed = Math.ceil(Math.log2(range));
          if (bits_needed > 53) {
            throw new Exception("We cannot generate numbers larger than 53 bits.");
          }
          var bytes_needed = Math.ceil(bits_needed / 8);
          var mask = Math.pow(2, bits_needed) - 1;
          // 7776 -> (2^13 = 8192) -1 == 8191 or 0x00001111 11111111

          // Create byte array and fill with N random numbers
          var byteArray = new Uint8Array(bytes_needed);
          crypt.getRandomValues(byteArray);

          var p = (bytes_needed - 1) * 8;
          for(var i = 0; i < bytes_needed; i++ ) {
              rval += byteArray[i] * Math.pow(2, p);
              p -= 8;
          }

          // Use & to apply the mask and reduce the number of recursive lookups
          rval = rval & mask;

          if (rval >= range) {
              // Integer out of acceptable range
              return random(min, max);
          }
          // Return an integer that falls within the range
          return min + rval;
      }
      return function() {
          var r = random(0, 1000000000) / 1000000000;
          return r;
      };
  } else {
      // From http://baagoe.com/en/RandomMusings/javascript/
      // Johannes Baagøe <baagoe@baagoe.com>, 2010
      function Mash() {
          var n = 0xefc8249d;

          var mash = function(data) {
              data = data.toString();
              for (var i = 0; i < data.length; i++) {
                  n += data.charCodeAt(i);
                  var h = 0.02519603282416938 * n;
                  n = h >>> 0;
                  h -= n;
                  h *= n;
                  n = h >>> 0;
                  h -= n;
                  n += h * 0x100000000; // 2^32
              }
              return (n >>> 0) * 2.3283064365386963e-10; // 2^-32
          };

          mash.version = 'Mash 0.9';
          return mash;
      }

      // From http://baagoe.com/en/RandomMusings/javascript/
      function Alea() {
          return (function(args) {
              // Johannes Baagøe <baagoe@baagoe.com>, 2010
              var s0 = 0;
              var s1 = 0;
              var s2 = 0;
              var c = 1;

              if (args.length == 0) {
                  args = [+new Date()];
              }
              var mash = Mash();
              s0 = mash(' ');
              s1 = mash(' ');
              s2 = mash(' ');

              for (var i = 0; i < args.length; i++) {
                  s0 -= mash(args[i]);
                  if (s0 < 0) {
                      s0 += 1;
                  }
                  s1 -= mash(args[i]);
                  if (s1 < 0) {
                      s1 += 1;
                  }
                  s2 -= mash(args[i]);
                  if (s2 < 0) {
                      s2 += 1;
                  }
              }
              mash = null;

              var random = function() {
                  var t = 2091639 * s0 + c * 2.3283064365386963e-10; // 2^-32
                  s0 = s1;
                  s1 = s2;
                  return s2 = t - (c = t | 0);
              };
              random.uint32 = function() {
                  return random() * 0x100000000; // 2^32
              };
              random.fract53 = function() {
                  return random() +
                      (random() * 0x200000 | 0) * 1.1102230246251565e-16; // 2^-53
              };
              random.version = 'Alea 0.9';
              random.args = args;
              return random;

          }(Array.prototype.slice.call(arguments)));
      };
      return Alea();
  }
}());

Math.guid = function() {
    return 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(/[xy]/g, function(c)    {
      var r = Math.trueRandom() * 16 | 0,
          v = c == 'x' ? r : (r & 0x3 | 0x8);
      return v.toString(16);
  });
};
function logit(item1, item2) {
    console.log("Do "+item1+" and "+item2+" equal? "+(item1 == item2 ? "OMG! take a screenshot and you'll be epic on the world of cryptography, buy a lottery ticket now!":"No they do not. shame. no fame")+ ", runs: "+window.numberofRuns);
}
numberofRuns = 0;
function test() {
   window.numberofRuns++;
   var x = Math.guid();
   var y = Math.guid();
   var test = x == y || historyTest(x,y);

   logit(x,y);
   return test;

}
historyArr = [];
historyCount = 0;
function historyTest(item1, item2) {
    if(window.luckyDog) {
       return false;
    }
    for(var i = historyCount; i > -1; i--) {
        logit(item1,window.historyArr[i]);
        if(item1 == history[i]) {
            
            return true;
        }
        logit(item2,window.historyArr[i]);
        if(item2 == history[i]) {
            
            return true;
        }

    }
    window.historyArr.push(item1);
    window.historyArr.push(item2);
    window.historyCount+=2;
    return false;
}
luckyDog = false;
document.body.onload = function() {
document.getElementById('runit').onclick  = function() {
window.luckyDog = document.getElementById('lucky').checked;
var val = document.getElementById('input').value
if(val.trim() == '0') {
    var intervaltimer = window.setInterval(function() {
         var test = window.test();
         if(test) {
            window.clearInterval(intervaltimer);
         }
    },0);
}
else {
   var num = parseInt(val);
   if(num > 0) {
        var intervaltimer = window.setInterval(function() {
         var test = window.test();
         num--;
         if(num < 0 || test) {
    
         window.clearInterval(intervaltimer);
         }
    },0);
   }
}
};
};
Please input how often the calulation should run. set to 0 for forever. Check the checkbox if you feel lucky.<BR/>
<input type="text" value="0" id="input"><input type="checkbox" id="lucky"><button id="runit">Run</button><BR/>

查看更多
登录 后发表回答