How safe is it to use UUID to uniquely identify something (I'm using it for files uploaded to the server)? As I understand it, it is based off random numbers. However, it seems to me that given enough time, it would eventually repeat it self, just by pure chance. Is there a better system or a pattern of some type to alleviate this issue?
相关问题
- TFS 2015: Version-Error uploading custom process t
- How to compare two GUIDs in Linq to Entities
- Generating (very) large non-repeating integer sequ
- Transforming a Java UUID object to a .NET GUID str
- How to generate a version 1 Guid in .NET?
相关文章
- How to create a 8 digit Unique ID in Python?
- How can I create a guid in MFC
- How to use uuid with postgresql gist index type?
- .NET GUID uppercase string format
- AttributeError: 'UUID' object has no attri
- What is {{$guid}} used for in Postman?
- ways for a client to identify the specific access
- Returning Hex UUID as default value for Django mod
Very safe:
Caveat:
Source: The Random UUID probability of duplicates section of the Wikipedia article on Universally unique identifiers (link leads to a revision from December 2016 before editing reworked the section).
Also see the current section on the same subject on the same Universally unique identifier article, Collisions.
Quoting from Wikipedia:
It goes on to explain in pretty good detail on how safe it actually is. So to answer your question: Yes, it's safe enough.
There is more than one type of UUID, so "how safe" depends on which type (which the UUID specifications call "version") you are using.
Version 1 is the time based plus MAC address UUID. The 128-bits contains 48-bits for the network card's MAC address (which is uniquely assigned by the manufacturer) and a 60-bit clock with a resolution of 100 nanoseconds. That clock wraps in 3603 A.D. so these UUIDs are safe at least until then (unless you need more than 10 million new UUIDs per second or someone clones your network card). I say "at least" because the clock starts at 15 October 1582, so you have about 400 years after the clock wraps before there is even a small possibility of duplications.
Version 4 is the random number UUID. There's six fixed bits and the rest of the UUID is 122-bits of randomness. See Wikipedia or other analysis that describe how very unlikely a duplicate is.
Version 3 is uses MD5 and Version 5 uses SHA-1 to create those 122-bits, instead of a random or pseudo-random number generator. So in terms of safety it is like Version 4 being a statistical issue (as long as you make sure what the digest algorithm is processing is always unique).
Version 2 is similar to Version 1, but with a smaller clock so it is going to wrap around much sooner. But since Version 2 UUIDs are for DCE, you shouldn't be using these.
So for all practical problems they are safe. If you are uncomfortable with leaving it up to probabilities (e.g. your are the type of person worried about the earth getting destroyed by a large asteroid in your lifetime), just make sure you use a Version 1 UUID and it is guaranteed to be unique (in your lifetime, unless you plan to live past 3603 A.D.).
So why doesn't everyone simply use Version 1 UUIDs? That is because Version 1 UUIDs reveal the MAC address of the machine it was generated on and they can be predictable -- two things which might have security implications for the application using those UUIDs.
Been doing it for years. Never run into a problem.
I usually set up my DB's to have one table that contains all the keys and the modified dates and such. Haven't run into a problem of duplicate keys ever.
The only drawback that it has is when you are writing some queries to find some information quickly you are doing a lot of copying and pasting of the keys. You don't have the short easy to remember ids anymore.
UUID schemes generally use not only a pseudo-random element, but also the current system time, and some sort of often-unique hardware ID if available, such as a network MAC address.
The whole point of using UUID is that you trust it to do a better job of providing a unique ID than you yourself would be able to do. This is the same rationale behind using a 3rd party cryptography library rather than rolling your own. Doing it yourself may be more fun, but it's typically less responsible to do so.
Here's a testing snippet for you to test it's uniquenes. inspired by @scalabl3's comment
If you feel lucky, check the checkbox, it only checks the currently generated id's. If you wish a history check, leave it unchecked. Please note, you might run out of ram at some point if you leave it unchecked. I tried to make it cpu friendly so you can abort quickly when needed, just hit the run snippet button again or leave the page.