Shift hue of an RGB Color

2019-01-07 07:16发布

I'm trying to write a function to shift the hue of an RGB color. Specifically I'm using it in an iOS app, but the math is universal.

The graph below shows how the R, G, and B values change with respect to the hue.

Graph of RGB values across hues

Looking at that it seems like it should be a relatively simple to write a function to shift the hue without doing any nasty conversions to a different color format which would introduce more error (which could be an issue if continue applying small shifts to a color), and I suspect would be more computationally expensive.

Here is what I have so far which sort of works. It works perfectly if you're shifting from pure yellow or cyan or magenta but otherwise it gets a little squiffy in some places.

Color4f ShiftHue(Color4f c, float d) {
    if (d==0) {
        return c;
    }
    while (d<0) {
        d+=1;
    }

    d *= 3;

    float original[] = {c.red, c.green, c.blue};
    float returned[] = {c.red, c.green, c.blue};

    // big shifts
    for (int i=0; i<3; i++) {
        returned[i] = original[(i+((int) d))%3];
    }
    d -= (float) ((int) d);
    original[0] = returned[0];
    original[1] = returned[1];
    original[2] = returned[2];

    float lower = MIN(MIN(c.red, c.green), c.blue);
    float upper = MAX(MAX(c.red, c.green), c.blue);

    float spread = upper - lower;
    float shift  = spread * d * 2;

    // little shift
    for (int i = 0; i < 3; ++i) {
        // if middle value
        if (original[(i+2)%3]==upper && original[(i+1)%3]==lower) {
            returned[i] -= shift;
            if (returned[i]<lower) {
                returned[(i+1)%3] += lower - returned[i];
                returned[i]=lower;
            } else
                if (returned[i]>upper) {
                    returned[(i+2)%3] -= returned[i] - upper;
                    returned[i]=upper;
                }
            break;
        }
    }

    return Color4fMake(returned[0], returned[1], returned[2], c.alpha);
}

I know you can do this with UIColors and shift the hue with something like this:

CGFloat hue;
CGFloat sat;
CGFloat bri;
[[UIColor colorWithRed:parent.color.red green:parent.color.green blue:parent.color.blue alpha:1] getHue:&hue saturation:&sat brightness:&bri alpha:nil];
hue -= .03;
if (hue<0) {
    hue+=1;
}
UIColor *tempColor = [UIColor colorWithHue:hue saturation:sat brightness:bri alpha:1];
const float* components= CGColorGetComponents(tempColor.CGColor);
color = Color4fMake(components[0], components[1], components[2], 1);

but I'm not crazy about that as It only works in iOS 5, and between allocating a number of color objects and converting from RGB to HSB and then back it seems pretty overkill.

I might end up using a lookup table or pre-calculate the colors in my application, but I'm really curious if there's a way to make my code work. Thanks!

11条回答
ら.Afraid
2楼-- · 2019-01-07 07:41

Also, Mark´s algo produces more accurated results.

For instance, if you rotate the hue to 180º using HSV colorspace, the image may result in a reddish tone color.

But on Mark´s algo, the image is properly rotate. Skins tones for example (Hue = 17, Sat = 170, L = 160 in PSP) turns properly to blue that have Hue around 144 in PSP, and all other colors of the image are properly rotate.

The algo makes sense since Hue is nothing more, nothing else then a Logarithm function of a arctan of Red, Green, Blue as defined by this formula:

Hue = arctan((logR-logG)/(logR-logG+2*LogB))
查看更多
我欲成王,谁敢阻挡
3楼-- · 2019-01-07 07:44

I was disappointed by most answers I found here, some were flawed and basically flat-out wrong. I ended up spending 3+ hours trying to figure this out. The answer by Mark Ransom is correct, but I want to offer a complete C solution that's also verified with MATLAB. I have tested this thoroughly, and here is the C code:

#include <math.h>
typedef unsigned char BYTE; //define an "integer" that only stores 0-255 value

typedef struct _CRGB //Define a struct to store the 3 color values
{
    BYTE r;
    BYTE g;
    BYTE b;
}CRGB;

BYTE clamp(float v) //define a function to bound and round the input float value to 0-255
{
    if (v < 0)
        return 0;
    if (v > 255)
        return 255;
    return (BYTE)v;
}

CRGB TransformH(const CRGB &in, const float fHue)
{
    CRGB out;
    const float cosA = cos(fHue*3.14159265f/180); //convert degrees to radians
    const float sinA = sin(fHue*3.14159265f/180); //convert degrees to radians
    //calculate the rotation matrix, only depends on Hue
    float matrix[3][3] = {{cosA + (1.0f - cosA) / 3.0f, 1.0f/3.0f * (1.0f - cosA) - sqrtf(1.0f/3.0f) * sinA, 1.0f/3.0f * (1.0f - cosA) + sqrtf(1.0f/3.0f) * sinA},
        {1.0f/3.0f * (1.0f - cosA) + sqrtf(1.0f/3.0f) * sinA, cosA + 1.0f/3.0f*(1.0f - cosA), 1.0f/3.0f * (1.0f - cosA) - sqrtf(1.0f/3.0f) * sinA},
        {1.0f/3.0f * (1.0f - cosA) - sqrtf(1.0f/3.0f) * sinA, 1.0f/3.0f * (1.0f - cosA) + sqrtf(1.0f/3.0f) * sinA, cosA + 1.0f/3.0f * (1.0f - cosA)}};
    //Use the rotation matrix to convert the RGB directly
    out.r = clamp(in.r*matrix[0][0] + in.g*matrix[0][1] + in.b*matrix[0][2]);
    out.g = clamp(in.r*matrix[1][0] + in.g*matrix[1][1] + in.b*matrix[1][2]);
    out.b = clamp(in.r*matrix[2][0] + in.g*matrix[2][1] + in.b*matrix[2][2]);
    return out;
}

NOTE: The rotation matrix only depends on the Hue (fHue), so once you've computed matrix[3][3], you can reuse it for every pixel in the image that is undergoing the same hue transformation! This will improve the efficiency drastically. Here is a MATLAB code that verifies the results:

function out = TransformH(r,g,b,H)
    cosA = cos(H * pi/180);
    sinA = sin(H * pi/180);

    matrix = [cosA + (1-cosA)/3, 1/3 * (1 - cosA) - sqrt(1/3) * sinA, 1/3 * (1 - cosA) + sqrt(1/3) * sinA;
          1/3 * (1 - cosA) + sqrt(1/3) * sinA, cosA + 1/3*(1 - cosA), 1/3 * (1 - cosA) - sqrt(1/3) * sinA;
          1/3 * (1 - cosA) - sqrt(1/3) * sinA, 1/3 * (1 - cosA) + sqrt(1/3) * sinA, cosA + 1/3 * (1 - cosA)];

    in = [r, g, b]';
    out = round(matrix*in);
end

Here is a sample input/output that was reproduceable by both codes:

TransformH(86,52,30,210)
ans =
    36
    43
    88

So the input RGB of [86,52,30] was converted to [36,43,88] using a hue of 210.

查看更多
放荡不羁爱自由
4楼-- · 2019-01-07 07:46

The post is old, and the original poster was looking for ios code - however, I was sent here via a search for visual basic code, so for all those like me, I converted Mark's code to a vb .net module:

Public Module HueAndTry    
    Public Function ClampIt(ByVal v As Double) As Integer    
        Return CInt(Math.Max(0F, Math.Min(v + 0.5, 255.0F)))    
    End Function    
    Public Function DegreesToRadians(ByVal degrees As Double) As Double    
        Return degrees * Math.PI / 180    
    End Function    
    Public Function RadiansToDegrees(ByVal radians As Double) As Double    
        Return radians * 180 / Math.PI    
    End Function    
    Public Sub HueConvert(ByRef rgb() As Integer, ByVal degrees As Double)
        Dim selfMatrix(,) As Double = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}
        Dim cosA As Double = Math.Cos(DegreesToRadians(degrees))
        Dim sinA As Double = Math.Sin(DegreesToRadians(degrees))
        Dim sqrtOneThirdTimesSin As Double = Math.Sqrt(1.0 / 3.0) * sinA
        Dim oneThirdTimesOneSubCos As Double = 1.0 / 3.0 * (1.0 - cosA)
        selfMatrix(0, 0) = cosA + (1.0 - cosA) / 3.0
        selfMatrix(0, 1) = oneThirdTimesOneSubCos - sqrtOneThirdTimesSin
        selfMatrix(0, 2) = oneThirdTimesOneSubCos + sqrtOneThirdTimesSin
        selfMatrix(1, 0) = selfMatrix(0, 2)
        selfMatrix(1, 1) = cosA + oneThirdTimesOneSubCos
        selfMatrix(1, 2) = selfMatrix(0, 1)
        selfMatrix(2, 0) = selfMatrix(0, 1)
        selfMatrix(2, 1) = selfMatrix(0, 2)
        selfMatrix(2, 2) = cosA + oneThirdTimesOneSubCos
        Dim rx As Double = rgb(0) * selfMatrix(0, 0) + rgb(1) * selfMatrix(0, 1) + rgb(2) * selfMatrix(0, 2)
        Dim gx As Double = rgb(0) * selfMatrix(1, 0) + rgb(1) * selfMatrix(1, 1) + rgb(2) * selfMatrix(1, 2)
        Dim bx As Double = rgb(0) * selfMatrix(2, 0) + rgb(1) * selfMatrix(2, 1) + rgb(2) * selfMatrix(2, 2)
        rgb(0) = ClampIt(rx)
        rgb(1) = ClampIt(gx)
        rgb(2) = ClampIt(bx)
    End Sub
End Module

I put common terms into (long) variables, but otherwise it's a straightforward conversion - worked fine for my needs.

By the way, I tried to leave Mark an upvote for his excellent code, but I didn't have enough votes myself to allow it to be visible (Hint, Hint).

查看更多
孤傲高冷的网名
5楼-- · 2019-01-07 07:48

PHP implementation:

class Hue
{
    public function convert(int $r, int $g, int $b, int $hue)
    {
        $cosA = cos($hue * pi() / 180);
        $sinA = sin($hue * pi() / 180);

        $neo = [
            $cosA + (1 - $cosA) / 3,
            (1 - $cosA) / 3 - sqrt(1 / 3) * $sinA,
            (1 - $cosA) / 3 + sqrt(1 / 3) * $sinA,
        ];

        $result = [
            $r * $neo[0] + $g * $neo[1] + $b * $neo[2],
            $r * $neo[2] + $g * $neo[0] + $b * $neo[1],
            $r * $neo[1] + $g * $neo[2] + $b * $neo[0],
        ];

        return array_map([$this, 'crop'], $result);
    }

    private function crop(float $value)
    {
        return 0 > $value ? 0 : (255 < $value ? 255 : (int)round($value));
    }
}
查看更多
狗以群分
6楼-- · 2019-01-07 07:53

Edit per comment changed "are all" to "can be linearly approximated by".
Edit 2 adding offsets.


Essentially, the steps you want are

RBG->HSV->Update hue->RGB

Since these can be approximated by linear matrix transforms (i.e. they are associative), you can perform it in a single step without any nasty conversion or loss of precision. You just multiple the transform matrices with each other, and use that to transform your colors.

There's a quick step by step here http://beesbuzz.biz/code/hsv_color_transforms.php

Here's the C++ code (With the saturation and value transforms removed):

Color TransformH(
    const Color &in,  // color to transform
    float H
)
{
  float U = cos(H*M_PI/180);
  float W = sin(H*M_PI/180);

  Color ret;
  ret.r = (.299+.701*U+.168*W)*in.r
    + (.587-.587*U+.330*W)*in.g
    + (.114-.114*U-.497*W)*in.b;
  ret.g = (.299-.299*U-.328*W)*in.r
    + (.587+.413*U+.035*W)*in.g
    + (.114-.114*U+.292*W)*in.b;
  ret.b = (.299-.3*U+1.25*W)*in.r
    + (.587-.588*U-1.05*W)*in.g
    + (.114+.886*U-.203*W)*in.b;
  return ret;
}
查看更多
该账号已被封号
7楼-- · 2019-01-07 07:54

For anyone who needs the above described (gamma-uncorrected) hue shift as a parameterized HLSL Pixel shader (I through it together for a WPF application and thought I might even just share it):

    sampler2D implicitInput : register(s0);
    float factor : register(c0);

    float4 main(float2 uv : TEXCOORD) : COLOR
    {
            float4 color = tex2D(implicitInput, uv);

            float h = 360 * factor;          //Hue
            float s = 1;                     //Saturation
            float v = 1;                     //Value
            float M_PI = 3.14159265359;

            float vsu = v * s*cos(h*M_PI / 180);
            float vsw = v * s*sin(h*M_PI / 180);

            float4 result;
            result.r = (.299*v + .701*vsu + .168*vsw)*color.r
                            + (.587*v - .587*vsu + .330*vsw)*color.g
                            + (.114*v - .114*vsu - .497*vsw)*color.b;
            result.g = (.299*v - .299*vsu - .328*vsw)*color.r
                            + (.587*v + .413*vsu + .035*vsw)*color.g
                            + (.114*v - .114*vsu + .292*vsw)*color.b;
            result.b = (.299*v - .300*vsu + 1.25*vsw)*color.r
                            + (.587*v - .588*vsu - 1.05*vsw)*color.g
                            + (.114*v + .886*vsu - .203*vsw)*color.b;;
            result.a = color.a;

            return result;
    }
查看更多
登录 后发表回答