Following is the output of objdump of a sample program,
080483b4 <display>:
80483b4: 55 push %ebp
80483b5: 89 e5 mov %esp,%ebp
80483b7: 83 ec 18 sub $0x18,%esp
80483ba: 8b 45 0c mov 0xc(%ebp),%eax
80483bd: 89 44 24 04 mov %eax,0x4(%esp)
80483c1: 8d 45 fe lea 0xfffffffe(%ebp),%eax
80483c4: 89 04 24 mov %eax,(%esp)
80483c7: e8 ec fe ff ff call 80482b8 <strcpy@plt>
80483cc: 8b 45 08 mov 0x8(%ebp),%eax
80483cf: 89 44 24 04 mov %eax,0x4(%esp)
80483d3: c7 04 24 f0 84 04 08 movl $0x80484f0,(%esp)
80483da: e8 e9 fe ff ff call 80482c8 <printf@plt>
80483df: c9 leave
80483e0: c3 ret
080483e1 <main>:
80483e1: 8d 4c 24 04 lea 0x4(%esp),%ecx
80483e5: 83 e4 f0 and $0xfffffff0,%esp
80483e8: ff 71 fc pushl 0xfffffffc(%ecx)
80483eb: 55 push %ebp
80483ec: 89 e5 mov %esp,%ebp
80483ee: 51 push %ecx
80483ef: 83 ec 24 sub $0x24,%esp
80483f2: c7 44 24 04 f3 84 04 movl $0x80484f3,0x4(%esp)
80483f9: 08
80483fa: c7 04 24 0a 00 00 00 movl $0xa,(%esp)
8048401: e8 ae ff ff ff call 80483b4 <display>
8048406: b8 00 00 00 00 mov $0x0,%eax
804840b: 83 c4 24 add $0x24,%esp
804840e: 59 pop %ecx
804840f: 5d pop %ebp
8048410: 8d 61 fc lea 0xfffffffc(%ecx),%esp
What i need to understand, is in main we see the following at address - 8048401, call 80483b4 , however the machine code is - e8 ae ff ff ff. I see that CALL instruction is E8 but how is the address of function 80483b4 getting decoded to FFFFFFAE? I did a lot of search in google but it did not return anything. Can Anyone please explain?
Interesting question. I've had a look at Intel's documentation and the
E8
opcode isCALL rel16/32
. 0xffffffae is actually a 32-bit two's complement signed integer equal to -82 decimal; it is a relative address from the byte immediately after the opcode and its operands.If you do the math you can see it checks out:
0x8048406 - 82 = 0x80483b4
This puts the instruction pointer at the beginning of the
display
function.E8 is the operand for "Call Relative", meaning the destination address is computed by adding the operand to the address of the next instruction. The operand is 0xFFFFFFAE, which is negative 0x52. 0x808406 - 0x52 is 0x80483b4.
Most disassemblers helpfully calculate the actual target address rather than just give you the relative address in the operand.
Complete info for x86 ISA at: http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-2a-manual.html
Near calls are typically IP-relative -- meaning, the "address" is actually an offset from the instruction pointer. In such case, EIP points to the next instruction (so its value is
8048406
). Addffffffae
(or-00000052
in two's complement) to it, and you get80483b4
.Note that all this math is 32-bit. You're not doing any 64-bit operations here (or your registers would have
R
s instead ofE
s in their names, and the addresses would be much longer).