How do I compute the intersection point of two lin

2019-01-07 06:02发布

I have two lines that intersect at a point. I know the endpoints of the two lines. How do I compute the intersection point in Python?

# Given these endpoints
#line 1
A = [X, Y]
B = [X, Y]

#line 2
C = [X, Y]
D = [X, Y]

# Compute this:
point_of_intersection = [X, Y]

4条回答
爷的心禁止访问
2楼-- · 2019-01-07 06:04

Can't stand aside,

So we have linear system:

A1 * x + B1 * y = C1
A2 * x + B2 * y = C2

let's do it with Cramer's rule, so solution can be found in determinants:

x = Dx/D
y = Dy/D

where D is main determinant of the system:

A1 B1
A2 B2

and Dx and Dy can be found from matricies:

C1 B1
C2 B2

and

A1 C1
A2 C2

(notice, as C column consequently substitues the coef. columns of x and y)

So now the python, for clarity for us, to not mess things up let's do mapping between math and python. We will use array L for storing our coefs A, B, C of the line equations and intestead of pretty x, y we'll have [0], [1], but anyway. Thus, what I wrote above will have the following form further in the code:

for D

L1[0] L1[1]
L2[0] L2[1]

for Dx

L1[2] L1[1]
L2[2] L2[1]

for Dy

L1[0] L1[2]
L2[0] L2[2]

Now go for coding:

line - produces coefs A, B, C of line equation by two points provided,
intersection - finds intersection point (if any) of two lines provided by coefs.

from __future__ import division 

def line(p1, p2):
    A = (p1[1] - p2[1])
    B = (p2[0] - p1[0])
    C = (p1[0]*p2[1] - p2[0]*p1[1])
    return A, B, -C

def intersection(L1, L2):
    D  = L1[0] * L2[1] - L1[1] * L2[0]
    Dx = L1[2] * L2[1] - L1[1] * L2[2]
    Dy = L1[0] * L2[2] - L1[2] * L2[0]
    if D != 0:
        x = Dx / D
        y = Dy / D
        return x,y
    else:
        return False

Usage example:

L1 = line([0,1], [2,3])
L2 = line([2,3], [0,4])

R = intersection(L1, L2)
if R:
    print "Intersection detected:", R
else:
    print "No single intersection point detected"
查看更多
We Are One
3楼-- · 2019-01-07 06:07

I didn't find an intuitive explanation on the web, so now that I worked it out, here's my solution. This is for infinite lines (what I needed), not segments.

Some terms you might remember:

A line is defined as y = mx + b OR y = slope * x + y-intercept

Slope = rise over run = dy / dx = height / distance

Y-intercept is where the line crosses the Y axis, where X = 0

Given those definitions, here are some functions:

def slope(P1, P2):
    # dy/dx
    # (y2 - y1) / (x2 - x1)
    return(P2[1] - P1[1]) / (P2[0] - P1[0])

def y_intercept(P1, slope):
    # y = mx + b
    # b = y - mx
    # b = P1[1] - slope * P1[0]
    return P1[1] - slope * P1[0]

def line_intersect(m1, b1, m2, b2):
    if m1 == m2:
        print ("These lines are parallel!!!")
        return None
    # y = mx + b
    # Set both lines equal to find the intersection point in the x direction
    # m1 * x + b1 = m2 * x + b2
    # m1 * x - m2 * x = b2 - b1
    # x * (m1 - m2) = b2 - b1
    # x = (b2 - b1) / (m1 - m2)
    x = (b2 - b1) / (m1 - m2)
    # Now solve for y -- use either line, because they are equal here
    # y = mx + b
    y = m1 * x + b1
    return x,y

Here's a simple test between two (infinite) lines:

A1 = [1,1]
A2 = [3,3]
B1 = [1,3]
B2 = [3,1]
slope_A = slope(A1, A2)
slope_B = slope(B1, B2)
y_int_A = y_intercept(A1, slope_A)
y_int_B = y_intercept(B1, slope_B)
print(line_intersect(slope_A, y_int_A, slope_B, y_int_B))

Output:

(2.0, 2.0)
查看更多
手持菜刀,她持情操
4楼-- · 2019-01-07 06:09

Using formula from: https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection

 def findIntersection(x1,y1,x2,y2,x3,y3,x4,y4):
        px= ( (x1*y2-y1*x2)*(x3-x4)-(x1-x2)*(x3*y4-y3*x4) ) / ( (x1-x2)*(y3-y4)-(y1-y2)*(x3-x4) ) 
        py= ( (x1*y2-y1*x2)*(y3-y4)-(y1-y2)*(x3*y4-y3*x4) ) / ( (x1-x2)*(y3-y4)-(y1-y2)*(x3-x4) )
        return [px, py]
查看更多
爱情/是我丢掉的垃圾
5楼-- · 2019-01-07 06:14

Unlike other suggestions, this is short and doesn't use external libraries like numpy. (Not that using other libraries is bad...it's nice not need to, especially for such a simple problem.)

def line_intersection(line1, line2):
    xdiff = (line1[0][0] - line1[1][0], line2[0][0] - line2[1][0])
    ydiff = (line1[0][1] - line1[1][1], line2[0][1] - line2[1][1]) #Typo was here

    def det(a, b):
        return a[0] * b[1] - a[1] * b[0]

    div = det(xdiff, ydiff)
    if div == 0:
       raise Exception('lines do not intersect')

    d = (det(*line1), det(*line2))
    x = det(d, xdiff) / div
    y = det(d, ydiff) / div
    return x, y

print line_intersection((A, B), (C, D))

And FYI, I would use tuples instead of lists for your points. E.g.

A = (X, Y)
查看更多
登录 后发表回答