Quicksort vs heapsort

2019-01-07 04:38发布

Both quicksort and heapsort do in-place sorting. Which is better? What are the applications and cases in which either is preferred?

11条回答
神经病院院长
2楼-- · 2019-01-07 04:48

http://www.cs.auckland.ac.nz/~jmor159/PLDS210/qsort3.html has some analysis.

Also, from Wikipedia:

The most direct competitor of quicksort is heapsort. Heapsort is typically somewhat slower than quicksort, but the worst-case running time is always Θ(nlogn). Quicksort is usually faster, though there remains the chance of worst case performance except in the introsort variant, which switches to heapsort when a bad case is detected. If it is known in advance that heapsort is going to be necessary, using it directly will be faster than waiting for introsort to switch to it.

查看更多
我命由我不由天
3楼-- · 2019-01-07 04:49

Heap Sort is a safe bet when dealing with very large inputs. Asymptotic analysis reveals order of growth of Heapsort in the worst case is Big-O(n logn), which is better than Quicksort's Big-O(n^2) as a worst case. However, Heapsort is somewhat slower in practice on most machines than a well-implemented quick sort. Heapsort is also not a stable sorting algorithm.

The reason heapsort is slower in practice than quicksort is due to the better locality of reference ("https://en.wikipedia.org/wiki/Locality_of_reference") in quicksort, where data elements are within relatively close storage locations. Systems that exhibit strong locality of reference are great candidates for performance optimization. Heap sort, however, deals with larger leaps. This makes quicksort more favorable for smaller inputs.

查看更多
We Are One
4楼-- · 2019-01-07 04:51

For most situations, having quick vs. a little quicker is irrelevant... you simply never want it to occasionally get waayyy slow. Although you can tweak QuickSort to avoid the way slow situations, you lose the elegance of the basic QuickSort. So, for most things, I actually prefer HeapSort... you can implement it in its full simple elegance, and never get a slow sort.

For situations where you DO want max speed in most cases, QuickSort may be preferred over HeapSort, but neither may be the right answer. For speed-critical situations, it is worth examining closely the details of the situation. For example, in some of my speed-critical code, it is very common that the data is already sorted or near-sorted (it is indexing multiple related fields that often either move up and down together OR move up and down opposite each other, so once you sort by one, the others are either sorted or reverse-sorted or close... either of which can kill QuickSort). For that case, I implemented neither... instead, I implemented Dijkstra's SmoothSort... a HeapSort variant that is O(N) when already sorted or near-sorted... it is not so elegant, not too easy to understand, but fast... read http://www.cs.utexas.edu/users/EWD/ewd07xx/EWD796a.PDF if you want something a bit more challenging to code.

查看更多
ゆ 、 Hurt°
5楼-- · 2019-01-07 04:51

Comp. between quick sort and merge sort since both are type of in place sorting there is a difference between wrost case running time of the wrost case running time for quick sort is O(n^2) and for heap sort it is still O(n*log(n)) and for a average amount of data quick sort will be more useful. Since it is randomized algorithm so the probability of getting correct ans. in less time will depend on the position of pivot element you choose.

So a

Good call: the sizes of L and G are each less than 3s/4

Bad call: one of L and G has size greater than 3s/4

for small amount we can go for insertion sort and for very large amount of data go for heap sort.

查看更多
Fickle 薄情
6楼-- · 2019-01-07 04:54

Quicksort-Heapsort in-place hybrids are really interesting, too, since most of them only needs n*log n comparisons in the worst case (they are optimal with respect to the first term of the asymptotics, so they avoid the worst-case scenarios of Quicksort), O(log n) extra-space and they preserve at least "a half" of the good behaviour of Quicksort with respect to already-ordered set of data. An extremely interesting algorithm is presented by Dikert and Weiss in http://arxiv.org/pdf/1209.4214v1.pdf:

  • Select a pivot p as the median of a random sample of sqrt(n) elements (this can be done in at most 24 sqrt(n) comparisons through the algorithm of Tarjan&co, or 5 sqrt(n) comparisons through the much more convoluted spider-factory algorithm of Schonhage);
  • Partition your array in two parts as in the first step of Quicksort;
  • Heapify the smallest part and use O(log n) extra bits to encode a heap in which every left child has a value greater than its sibling;
  • Recursively extract the root of the heap, sift down the lacune left by the root until it reaches a leaf of the heap, then fill the lacune with an appropriate element took from the other part of the array;
  • Recur over the remaining non-ordered part of the array (if p is chosen as the exact median, there is no recursion at all).
查看更多
Root(大扎)
7楼-- · 2019-01-07 04:59

Heapsort builds a heap and then repeatedly extracts the maximum item. Its worst case is O(n log n).

But if you would see the worst case of quick sort, which is O(n2), you would realized that quick sort would be a not-so-good choice for large data.

So this makes sorting is an interesting thing; I believe the reason so many sorting algorithms live today is because all of them are 'best' at their best places. For instance, bubble sort can out perform quick sort if the data is sorted. Or if we know something about the items to be sorted then probably we can do better.

This may not answer your question directly, thought I'd add my two cents.

查看更多
登录 后发表回答