saving Base64ImageField Type using Django Rest sav

2019-04-21 15:33发布

I have 5 image fields in my model , imageA, imageB, imageC, imageD and imageE I am trying to save the images in the following manner.The image are of type Base64ImageField

    images=["imageA","imageB","imageC","imageD","imageE"]
    for field in images:
        if field in serializer.validated_data:
            content = serializer.validated_data[field]
            dict = {field : content}
            modelJob.objects.filter(id=modjob.id).update(**dict)

In the above code content contains the raw data.I am trying to update the image using the dict I created (the key is the field name and value is the content).

However the images saved in the imageField of the model are raw and not an actual image. How can I fix this ? This is what my serializer looks like

class Serializer_Custom_RX(serializers.ModelSerializer):
    imageA = Base64ImageField(max_length=None, use_url=True, )
    imageB = Base64ImageField(max_length=None, use_url=True, )
    imageC = Base64ImageField(max_length=None, use_url=True, )
    imageD = Base64ImageField(max_length=None, use_url=True, )
    class Meta:
        model = modelTest
        fields = [
                  'title',
                  'zip',
                  'imageA','imageB','imageC','imageD',
                  ]

More info:

If I do something like this

modelJob.instance.imageA.save(content=content,name="image.jpeg")

it works fine and the problem is solved.However there are two problems with this approach first of all I do not know the extension. How do I extract an extension ? I am just guessing a jpeg here and it works. The next thing is Ill have to check for imageA,B,C,D and E if they exist and then save each one individually. If I could come up with a dynamic solution close to something that I have that would work as well. This is what my jsondata looks like that I am posting

{
    "title" : "Some Title",
    "zip":12345,
    "imageA":"/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxMTEhUUEhMWFhUXGSIbGBgYGSIgHhogIB8fHSAbHyAeICghHR8lHh0dITElJSsrLi4uICAzODMsNygtLisBCgoKDg0OGxAQGy0lICUtLS01LS8tLS0tLS8vLy0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLf/AABEIAKgBLAMBIgACEQEDEQH/xAAbAAACAgMBAAAAAAAAAAAAAAAFBgMEAAIHAf/EADwQAAIBAgUDAwMCBAUCBwEBAAECEQMhAAQSMUEFIlETYXEGMoFCkSOhscEUUmLR8AfhJDNygpKi8RUW/8QAGQEAAwEBAQAAAAAAAAAAAAAAAQIDAAQF/8QAKBEAAgICAgIBBAEFAAAAAAAAAAECEQMhEjEiQVEEEzJhcUKBwdHw/9oADAMBAAIRAxEAPwC10fKegPUMh3+2BqKCJ52m972w+fTvUlfV3FhOxMx8YWaJIzDgwQd0m0C/7if64vZlUUGpT0KQL8Dnf/X7nxGPPcnys7Z7CH1NQpMHVUU6khxsY3EWsd8IuWrNRZxZi4KMpiG8WNjYH8xghlyldalSlUd2UxFSwVTsw0m48RbC/UsX1Gb2YWmDc3uJ/vgtuwJVou1nsGCyx2PiI43M/wBce066OTqp7D/0n538yb4HZctLkkaI7R4O9hxMb/0wY6bkmYo02aQGv4k/NhthWjNhDJZoemEV27hctHP9WwVyKqFdG9TS0T9rLwJaQNM2tP74nz2XSlTRjEOZUEC20T5P45383M71DKVaYp1FTu4J0jY9wNtvxikFXYrS9HLetV0p16i0bqjSNaxt7GIIuLjCzmKAaTMGPx+/7YaeqZPLlajtWVai1AtHTOhkJAjvY6QsEySfuwrdQ+4B2LU1kB0XeBtc+Y52M4pCK9EJE/Ri5qotMeoSdOgsAGJBG/ncg74r5unoaoEBAV4IPBHFzNpO/GMrZV0KvTqIZAgo8FSwJ03iCIIPE49oytN1qKbkFSN7iDPlb/gnDuhCFAWJt3cjn8fi+PM47HR2kAEyZsYA2H/N8Xummiz6XJpyLNEydgA0iJtci2+BvUax0vTazBhHkGRMmbiJwIq5BapWePVD1AYBUWX3tvf5xvUo6WYfaJuJ3I9/GIek10DEkSBMA34sDbz7YJU6IqK7s3eSCsT3AkhgALDcG/g4aehKJGRlUKArK5Ugi5SCbHx8bxGL6y5EHTLElWspbURMfqHif9Xm46rUYawAIRo1Akd24Hsf1WP9MG6WUaqpiqbHspsSSFdtRj9tRP5xCTDV6JadAaS5YBid3HPtxc8fN8Tq4EdywePaQTjXN5JyxQNIDkAntDeGvtMgwb3xrmlAEXOntnYWH9Qecc6v2FaHHI9WT/ClUsywDYzbvBmIB7YF53OKebyLVFatT0SxsQD2wDsPeALmfa84B5LMXA0EaWBm0sRI7f54P0+rlaZQlNKkMH5B+DzYX9hbDfcvse7BiUKiUz65Ukccrs3wOR+MD6NXtYtZCSQs/Ij422GJs51QEM6hrRdo3Mi+504DZdxp0yZNoJ28D++HgmxWFlrCmqxIB4O4PjyYGD+RTLhA9VHAA+5RGpjBi4mY3i0YWaaGleoNQ0xMWDMmoDcEEE+eMFeo9Eq0FDsLNe6xBsYiSbExeJiR7O0Esf4tdbekpF+1b2B8zbycGQJC7dwhjaAfnfbf84g6H0IVqSE3LEkMGEDbtIknYG8DcjBTPUwqhQrKBuTtPgSZ21D+2J8H2FWMfTunrRE7+/zvgd9QV0dRpuwuLce3nAtM3VJRiFYG0Hdm4JA333O2M6g1VtdSoYCWOmP25uLH84ZztUkODaOZJYldybx+3zgn05ADrYLB2B5/bY4FdAz3pu4YAaxK7TBG9z5U+x+ME8zXAcJfSswQVZoUXsDG5/l84jVbDRLT6kbovdB2W8/j84H9Y60EGgfxKkwACCQdxqjb84p0emGozS5gkwdgb7E8RGLWU6ZTpj1GQSZBgQXAsPxMx+T8nXsYoDL+p/ErVDNm0iNNjIvETtv44xH6qPUBQFoEWn7m4E/GDlSiBSBKDQplr7c8/nziL6XeoU9VV0amY6YsVmFk8jSJ+TgX8meyxkOj1H0vUICkCeCB7HYHYH84Jv0+mhim9SPYjfnkYmyWfJU01l3Ahi2w/bc/GLGX6NSCjXJY3JkxPtGwxWCtaFsU+tdNanUFZgSCY7vcW29/+HFbMZJ6pCvURlqRMdpBEQNxJNx/ub4ZKvUFq0l9XukTpU3BkATHGq174g6hlmp04CLpIuSPzB8H8/GM1RZMW+oZCllpqIppuFkKrQCCRud7kftOAZy/rkmVmRq1Pc6yJ0gi8GbDjDnlehJWV2WsKhgRqaSoAEhhuNzEAR+cImfoOhB/hj+LC2MSYmVMEQbf0nBUfkZV0XM9lwqJSaxu7kGe07D3mC2DOV6zTRFFN2ci5HpwJjTYgwCRO37Yp5fJElTUjQe2dMwrfcLXB0gDbnG/UloCi70GhZ0gxJgbzedz+374BOfehhyHVDmhTpvlwVBhWkgWA7QY+7bke+IfqijkUqilVpVFLQTUUwqEmBM2XYxMKb4r/wDTTqzMtSnIJDQFYwD2r3TBm07f5cKX1Zk5qF0zNJtYYWqEdpBUySgUKLiQt5jycWSEboEZ+jRp5h0ql29NyG7RNjaIJWTcRt84kzr5R1C0j6J00yTVUmXAggRqCgkAz7XtgNVqVlUCpTJaoQdUfxGEnaLiYMEiTB9xh3X/AAmW1rmsuzMhZSyNrlWAh2LE3LWAKrtsZknjXZPsX6OdpoqNUpLUI1KEYNThpnWHSQ122gmQZAscQ9Xzb1yaroE4sukuOWImJFpKgDbaYwS6lTyYoEgmnmEP8JRcQSZmTfVJYkbGBA2wp16lV7sWZfMm3t/L+XthbT6Eeg3kM9QQ6EoK0ndgSxI2P7iSNrjaIwJ67kof7VVrSVICmVdm5tdSADc4iWuwUNJDKLECCQbGTza2NK1IuVjUWb7hYQTCi5Pud8HGmpWZytUUshAaWuPGCT1H74Kl2k8CDabARH4vgTQWbyT4wVylEz23I3mQIIEjeIk74pk+RaLVHMtpBZdS0zJWODBJJXa/PE++CmW6hSKsF1jUjaGBknYAMCYXYgkYqtSDU2J7KYEVGmLkjtAnuje3G4GK9BaQVmolmYHcrZRJMzPHwZ9sc7jaNsYsvnyKKoaKvCEGGIi4XXcROp4I32mBGIUpApuzNq7gBaLmVi+/Hv8At5TzdY6noI6h0PqED4ViRGlRMjtHJngiSgpIY0yU0Htk/ggmN7zF9sSmgkdZ/wCF3iGtLSYW8wR54n58jHtM1BDKAwJsCdrxYXAncDEtWCupwDNitxO0nx7/AL4JAK1JtCQqgAgAmR5iRO+/zsCcS5UwqOyo1NQSzAemwliTMRsTpv7wBjSrS0qqU4fT3Fyv3NJYRNyCo8Da++I1qEJJUarCNluD+LHztbEheo2gBT2rfSOBLaj7RN/GLReg0WaOVdEGk9weYixIIMAXn4wVyD1ivptWADsJSowMtNt5taZmLYEZWqx5Ibhr298XsilNSQErOJUswNzG+5HBt+ThIy8thRHmPUytXR6hQ7tp3M90Ha0wYwXb6lr19FNwAkyWCnibz8gi3vghnsiMzlxVFNAdQCnkkwtwBBsY+VFjiCrkqrZxEaopD6jTdgDFMlpBHkNZbCAfIxVuloLB+Vzy06ppVZ9XULHlbbFRK/n/AHxTzdWqaqOjduomouwa0/aAIOqL843+scktOoHK/wAJYV6lEyY911EgC4uR773nr5ta1YOqkkhQBI7jwJEAzta2BNcFaBbI6pBFNx94cppA/Qb6idjcD8E4ZKWXlEYAsxXumwQ7GwI4HPkGL4i6f1qnRoaGogy5VlUkksW5Ym8gbbCw2jG/R0d30uTpCEtTMwYggSOLg+8DG0+iiZBk65WmNChgCeJnuncC4+N78YuUT6oDvJ5t7cRsI3+QMS/4x6dIIqwANIflRsABG9v5HA/p+YXSJaLQYv8A2xCbppBs3+oXpnKkBdJfUiTdmc2GxgKBeSfFsbU816aAGfT2EDmw2/AjjFAVErVrM0U5HcIEmRIm4gf1OCVWkR+eZ/pPP/fBk20jInyOcQWQE8/HH/y84nOfqNcOR7Abfsd8DMtS0jUSd57fHFhOLbVK36FQD/W0H/6gjE+Ul7GSJaGTVczrpOHp1AI0wNidQMfduCPj2wb69mHp0iUUHhp4HmOcLn0r1qszilmUCVVMMJEOYs6gjtnxa/nDcgBJYgi0X8f2/wDzHoIEntWJ+Q6YiacxTlGZrlmJvEHtiwN7fHGA31DkHfMIrwzltY8HkaQ3nwd4GOlNSG2kaf6EbY5tm8s1d/WfuplriYIEwNMbb7YEkPGXJnn1CxSlQoq7LqYhgiydIljFyA0wOcVMx0ug1EoMxTFQD7qpixBkEj/MYUC4F/yS+pOgui03p12ChY9OpTkyYG8R+/i2KGW+hatOvOZak9NlJcE3MyABIjUCQf6HGjGts0qo550/ONTqEByobcLvF5CyDAgkT74em+mstRyvqlg9SokK1wFWqpUzLEFhI+299gLgawWnWq6DT9OqZYKsimASAsBZUySbHbziXN1CtSk1OorK1RToCwoYSdMMZUC5k/6vyryJMkol7r9CpkWo0gUzLQfv1MQxhUhSSAwtEW7RbeU/q/U67sDUN2/8w2AqXLS4FiQbCRIAHthnfrdPuerFV/S0EtDk6maHQ8ECIi8QThSpZudRZNZNlXnSRE3iYMWtf4wryOQstlSox0E6Z0mNQBvc3mNgYF/AxA9fTBE694IBX9vzzIucMWZRKNNKbhTJuxTbZhIsbgtBM2b912pk4EhrNMSJ0j+1j/3wYtexOLR4xeoJhT3Fm02UTEiAPjaMUqxYSpCwQDpAusQLmJvExJ34k4OdIphNJ9Q6T96rvuTBDWMge48+4WvVmq7zvBJ8QQJxSE020B6R7kmAWSB/scO2Q6IuYyqVQzKWcUiQxqMAEP6baZKwAeCCPGE7LLTLFiNa6WkASftYAx/6oM8b4az1J1yVCEUCqyyw7ZKgTJIAmDc3+4zFpabs0QZQ6dSerUpu0Uhq7zsCDCnfnxz/ADBDJ+lqamtQFDUbQP0lQrAPoKbN9okgyRIgYHU8oxRzAtA3+4GBa8xB32tjbptErVVmH8NWHqEgFY8GODf9rXxFzYOjoFPPirl6NBKQV1gFyEAMm7KCDqldyRvxhRrpUo1KyatUObqZEFoFwYFr/NsGOn9XFSguXYHUoY06hgrTjuYqAmpmgkW/0xcWBZTNQ7bPYhdW3JkjyRx5xOe0M9hLpOU9ZgrkC8CT9xNh/OPHF8MVbp7qqKEEqwBIaffTYkCbX+Ywo0M1LBVCrKhDyZ1TqHj/AC8298MvSOq6UamCIK6hAJuPtAgCA2mNW0D4B5q3Ro0bZvpTQFKlT3ElSDYQb9xCwvHvzxeFKgaNLLKyq5bVUaJOiDCsVkntiwsLYg+q8ylbLUKi6QzCG0m5iQV/lIneRih0/rjfwUTQSisssO6++ok8yQOd/NumlEbSKlWkdbelJG/MAC0zxf8ArjdOrGkskAFWF9Jn8gbjnGz9MYV2pkim+zD5vHIAji5xLnMkKP8ACZBcwDFzbYGTO87e+I+N0MloPVOrv6CFK9GG3oiFj92B+R84AjpzFldayu7OAaeqzCZAt3wdrHc3BuMTJWq6dS0KkCEjQwJJMSNRj8+2I831OmSKbUSjqO4MCZA+BpIm84eMpLaDQ1VuorVy1fLvl/SCgrUWBpUxIJItEwfOxPjCR0bMlaOlVA0tqmYbSuqw4BGg/NrYOZTptTMIDRqEgkqUOqGAknVNgomPz5OLFHqgoVKlJwESsJkqSoZVAYi0wUB/eeZxe3JbFo1q1EJorSUIQhJabsTa83uCeBvbbDF12itNabTvAf39j+P6DCFRK+uwsxDaEvsJsDsBbyLeAduiLkUYMgDs6JAZmGlTAhQNR8XwsE02FaBGbzYNJqevTqhmBWNTbGN4EgEX5O2AnpMZRSFYCSWN7nxuf6/2q5rMO19LNUa3F4i3tEDicMWR6dRWi5dhqN27+YsFi/P+4wkk5y2D2Xeh5Ck4ADtq58mLkzeJPi5wQ/8A4jXlu0bTzO9uJOK+RpJRZIkBhpA7p1DiIOoni/GPOqZ2ojkBamjy03neIEAf8tiqiuOxl3oG5mkKbb2i4Bvb9XMj5xZymWNRdRdrngTHtjRGcghKekEkkg7/AMjx74GVqRUwao87/wC+OOaSZTsI5bpaVgJp/wARJEEmFsIZQTqUCRY2jbDlSQ6RO4G/98LXQMwwqnVABG7N9wvB/wCeMFOssNBbUokRBNmPi34g47McvCxJW3Qt/VP1K6qyagLdwUwY5OrgWMfOFzpnVPUqCmlVQgI1iDJ0i8MRO0i2388S5+alWVVSB2nVAHJgwZJJOm3I2xJkqI9OrWRANbLTRAV7VUQW7ohS2pvMH2wNtfsslSNus9YLOKOXZqjWI/VeNzN2IHmd8D8/ns/6BZ2ZVqWBcwJF5F4F+T8Yu9HyQGXfM1aNM0gxZgSQxgkKosRBax+N98D/AKo+tPUHp0GdUcKCh0mL30m4utvIMEHjDUKwn0H6VLUabVaBZ45IF4PdBEExIMXvcjmh1fJPQAB9NCC2qVBLWIANjvq98Vl+r836nbmKoAG5AKgeCYuR/bArqFWs2qpUqAyWbWPuve3I8+BhJJCfIMVNbggiQSQLSW3AI2Mkx4/pgv0daeXT1KihnAB0lbkOZEOCRe5A0+b2JAjLZNgrlHWwgKDeeOLf2wYWmzoLk10B0lhF2kQNV97Enk25xOfwJBWDc9Xo9wqUnTlO4MASYloveAv4POKOXpAvpXaDqMEge94gEwt+cW+ruwqLpem5ouVDAWZZJK/Aab7/AN9OoqrE1FkU6g1KrAAAkghQ22xP998UpJUGS3ZOvTqlMqAumQAXgsApDG7QOFJhfG4wq9drj1qiUwoRZUaeQCL/ADI+bnDr9N18qVqLXqOGIKhVLHsANjpAgBokAiRN+Cm9cCl3alelLAEJAnQLTJ0nsspJIAmb4f6debsnLoj6NVVQSw1cEAxYggGb8mduB+CVAOyFiGKK2mSDpBidM7aiB7G3OF/Ig92kn7TIHwf5AxODtLMtSpqDcVR3wDsCDH/q2vFpHjFM0dkhl6B1Vg1Bq8sihkoKVBWbySJU/qF+4zG0DBnpXSqLLWNFqL1lqaApZdDIFV2Iv2sdL3sPuiIst9OABZ3pI1Ihvu41doi+8GRvcD8G/p/og9HMEVHdKcOAEI1HSQJk2MyP7wZxDkm6KGvSKiUVqVPTSodRVFLFYGoKxSCS0qbXmCSAbyHNUEMoB0z90EkRJsTt74zMiKSIrBTL+pctEFdNokfqHvzGBlKuyMFBEjkWkHjwRtOIpNgGLo/+DWk5rM4cEenG7QrA2jkkAg7gG/OI2zut0BOofawY30klt5OmZgwLSd742+l8rTrsVYqH1Aoalwxn7GYXAni2okXEXMZX6KKZinSq1wsmCEOogwSCTErJFp+7jDOLlHRqfordHltVBlSzFg5PeIK6gv8AmaAI/wDd+LnSMqEzFNlUu51htQmyvpPaLkgG8/PnFfpOV1NVVRBsdf8AlBtrlmAhrQT5F9ySP0j1PTmxKux/iaTM2Okyb7D+s40XY8aSLH1B0KscwShClou+xtHiQSV+AIviTK505av/AOIZKjLGphc8EQTcC9o3wy9WqpUqJ6hIOhpAntEq3Bu1jbj+eFGn1iiKrF6T1aYtLLMb+x3Mm3tiOXsel2E+s/UFOsQKSkW0kmbbmPmSD++BGVymiKlclCCYCnvncAztY77RO+C308gdiVCLSP3F1tEz+82HgCMUuqZGnSao1OsXSI7iIkzYWuMBN1ZqAuRyzio7pWakFEk6iSWNwI94MEadt9sS5b6gh6buDrp1FZiTA02RoF7EEGfAgzAxDk8zT9VQw002fuFyCIi95mw+MMPV8nTqxTSnpKAhX3UaiINtoliZ972x0Kb0agH6/wD4011AX1XkTpO3cGJ2JhgLbaQLRjolPotJwhNR3d4JJNos0QIjYfyxy8150aluGZZAOqVDWgnaYvvhny/1JVCUVU2juPIEjs9pvBnzhudS2bj8Fn6soquZsDpqNEgSNRkET/6iJuB3XxQy00nXulGmAwiSu9p8HmJvFsXurvUzGWFYgJ6LNGhpUBWuszqBAHjjAapmxVfUzLDXMcQIgEkgA3J+TieaS9B7Q7UHo+mzApqA1LN42+3wfgRi7Q616q6RRLsPukgAe99pF8KOQzyA6tEQ33ARPBvzG0f/AJizV6vDMtFCEbeFBE8MSVsfeMDHntbNxLy5fMs4g00WT2oe6AJuSCf2EeMD85llDkq1JQbwKc/1af3xX6nmAGIqEyPuuTEfpuIvzbAuk9bMTUpoCpNrm3tthZNvoZJjx0kKqCnVTUAbFhBaeSOTePycZ1hVFKrVjSKaksdMkxMCCDJO0HfED9ZouTDKxW0+5IjfxH88Lv1V1I1CFUgdwlgTDRFo2kHGxzbfBhStisc7Xo1lqep/5k6UMgEMSDtF9VwCD5nHQ8wKVLp4AAmoIUWN9iQYvYki3jCtlen06mbouEnQQ5BIWAB2mZteD+2GDM5xK2bSk7TSpjVIExaZPO+n98dSyJjvsO5vpRrUBRRl9MoEaJUzBnzG/jnHOOu/TtUPTRlARFBmAQJlQJMG4RrE8Tzhy/8A9JUy9JpUOJhWdomJubeByf5Yi6TmqdcVMzUU1GckNDSNABCgKLjUR2mPzc40ZRltE9+wHW6bROWqM2um9JQJGnQwMWWbzB+b4Weo9OZYaGAqLqUsV2mJPN7xG/8AR6+t81RrUwnpvTqipA1A6TaCbSpgEe4thZ6x0rL0UWoKtSoSpCqTC7j7fENf3gTG+NKhHsTWzDUwYbuJMrffzx7j5jBrpvU1VgXqXIBhEbUDYEcyogkRG+B+ZybF9dNWKiDIHBgR7mSf24wSyeVkU0oVC1YyVQRJIWe0A/dvv4JxNpMVJos5n6MJfWzEpVnSIiDJYBZ/Vptpid/gCuqdIzOXGmmHajUIVR/mnaB5DDgYgzvUKr6OxlZZPsWt3SSWJtNyYkgADBVfqnOGhRDmmFRnVGQw02JZ5DaQZEEAcnBUZe2M2gP05kRvVqgvUYxpEFoK3Yi8DgzxO2BfUa7tRp0yVKqzMzKsSzAgEgARvH7YK5vOa2DMP4mmTWg3UTIAVgCSTo1GMLOYzjkLJIIJJIYmZMnf3knzOK41u0RbKmSqlSSDFo3iZsR72OGXKh6iq5SVXSvbAJ3O5kSYMb2GwwB6Zky7i4CkwSfB/vxgwrlf4SEQDFjvBNxJgzh87VgGj6cVShqMoLMG0wyjQRLEaWPfKrtFjG0zitWz9RHq5fLAiidMlbgydxYSGYAAmwgWGBXTcv6gMN6ZOoAMbHiCZEc8cjFzLJmaNZvTkkAFiokaZ0yCeAYE7bc45Vq0FMO9A+m/UqNQrUwZBJZTBUiIIJggHnzxbdXzmWJzboJKpUcUyJAKq5AKnke+Gf6X6mn+Po1HAp02qHXMae5GAWIsJIvEfGBXSeosczU1ICqu/pqDOmKh+2N7dvuI9sUjKo8ki643dG3TpFZk7ZWGLPEydxC2bu2iPc2OOhdMdKlGmioAQA7UxSV4O7BnqEyRcjTp0iBfhIzXTPXqujKEckFiikWvb3Jj9484ccp9M0xTQatDkdxVSQ9MzAJYW5MiCJAJuJ5nl5fiS96CnR6lE9SZKasAcvpKssGzsQo9gIifbC/kso1LqDpTpsQuvWgjuQhAYkXt/QYj65mGyWbyrq2sSyF9V21QQD+rSoO5Y7tsFxvnMzUXqOaIc0mVFOsCTDMswBcyARI/BxaM/HaLRd2Xer9ZWUp0KTb6SDPYTMiRAMpxM7HEGapLl9RK3IJF+086IP7fvc4r0n0o+ts4lQ30mnKvIkFf4dy0Te4g/OF7rHVy40mpWdiAw1KsLO0ACZv/AMtjmpzF6Q49F6ktSn6isylTqYLTMeSJ2Ei8TPjF76nyVKpSGYQakK/oAvquGbnc8H5xzzL1axplStUIT3NcAFYsQt7CN7Xw4dG6PVI9R3LUnBEEsQZ2MCy7cm+MvHRgBXyNPSFpgFjHfP2ze0Ryf5n82crk61Kq1MMaqKsOJgpqBkGbExAIE7e8GbqHRUpHVoRzuACb2tAG0GP+84Zui9CFUI7rIt8sbb8AAW3nGWR3SKca2xP6g05kLSMK3eu0llUhvhtO49jtjJdoFF4ZpILD7SQRM/Emb8YPfW3TFywR6ACmmy1L2DNqgi+7aJsDwPaA+TEfxBp9NXBkNsNW41GTBg/jFMhtPaGLLdZSl/C9MFQipqBgEQVluNm8nCalP06zKzEMjgK0RKydJ+DvPEYZaPT/AFHj0yG0DtkCIeBqj9rHj4wM+tcn/ESooEooDngLuPaAZ3/zb4SD3TH4l+lXBTUCWgSR29pHB1EyNuR/vTq5lqs06jKCxDCGCkAA/cf6CL7wcLvSeqVXMJYNIKmLgcDVyQT5/OGs9PFFNXp0lX7g4KkzwWY74nJfbdM3YK6hXRTTpktVabARtckmwsPPxvbFv/H1aYAQogiSrXv8hsLWV6xorvmCVZ4KU4UQw5JFxExfwLb48fIGqddQuGO9vztIA+BbFqa7MnQ21ulVKR1TsSjCLLpnTcG4mL7mSOIxT6YHr129RQwpKzEDawO1xMsbSZwT+oeprSoltNPU8hmMTJk6o+W98AunZkU6TNbUSDP+kbTf/N/XDYZ8o8q/QIqtjT0DKkpUrzBmASDACwW5O4tvxgb0/raZelUzLq/dUAAVfHeRMgDZRvijm+v1Uyi0kVVRt2m8OCdiN5BHttfAPN1qyCmSwKGWCXOklSJIjcAT7EA+MNw7fz/gL6YZzn1AMyKulUR2WArtuWOmwjcWt/th5+i+m1suNFZFCr2yPNoF7ke/mccq6J0cvm0os6hEHqM5sCPA8m+8C6nxjuPT+ntA1k6f0qbxuSTN7zttGKwxxjqP8km9AvrnRqeYzSqSFCpNSIBNzaeJkYG/WnR2GVqfxgaZ0hF0r2yY+7e/Mm+5wFrrm/Xq1lKOUYqNYGlypso1WELfzbCrn81WqaGrOx9VS2n/ACBCQRoBhb3X2HvhrXwB60TUHoUwKavUBQg6tpcHdQCSoN/ew22xLTmmZorFSQVBBLQJsAfAJNxGxNhgFQDF20ldMkrIJcCPtEC5m0xz7YY+h5tddT1W0LTpEwzRYr20wW3YP233H7YjNO1RorQO6ZQOZinTQ1lHcFRWLguSxUk9qgXOqRxGBGbyjLVdXWoml2lF1MqARAlyBAuN5+bDBrKdRpUmKU2ei6xpaZt/lkQSxJOwjfHv1Fk/XBq1T3t3s6szdkCBBMKDqAvtER5WLXVCtcgNn85TfLQLaILA7k3UaCBa1rkXI3nCzT0FH1kqQJHMmYvIvwbX/Y4I9QpqEBDD/SZM2Jv/AKbgbD+pwJqZBgqsysA0xtBgwb/PtjoxJJbJN7DP05QRSGc9hqJB3Ki5LAEeBgzkqD06XrKikUzOoiSwZ4iI9x8YD5CpFBTEMlQD3NmsTsdxt7WHNvJZ6uPVSmkgyxK3UAXbzYCDa8R5xOdttButE9KgrgD/AMtadR9TKAD39yg1DAaNJhBHP4sZB6aEqxJpup1kEkwDO2oGZE78zxYFlnI1g2IYFl32J4JubxHzgx030aFZmzEsPTfSAfM6SQNhBO0xO2Fk30FS0b5CrTILgxDyD+qL3E8gc+YM426VR01dagKTJksYmSSTzcmce9I6VRqK9QEqWb+GRMDtZlH6jEgDk298UnrdumBcHVLRwd+d8TbkpaG8k0Hj1JRmzqEhiD2MFK2+4GStze5t+cN1fMAij6gYtURlQGqwFQCCAQhhDq2MGxHnCRlOnp6lAMwdXCxYq+khiI94sZuDO4iSNGhXpvUNDX2htIZSbMADcmAVB1SDMAW3GElFqwNPdhb/AKj5ZWy1LNJIKVVBIBvIIkFiSRMRM74vmgBn6dQ1HX1sssVGYTIJOqYIgyLQLYpfWRb/APlimyx6kEAH7WRw7agVWJA8bn84odYzoanlNmf/AArIBE3BtMf+mwxSErjT72Wg1VHQ8xUUiK5Y6lgPCwRvvBiZH/BOOVv09zUOkF4Z1kCWhDEwBeRsR7+MEst9b5r0TTNNO/V3sIJ4MTYkcDjxiH6QrN/jGOpg06vcLF1gRIJI328jEre7EtdBTL0dLIaupWIClSJuNJHEzp/74dsl00KXMQr3K2Cz/mgefcnCz1U0/T1ikKb0yKhUCLzFiRuJ/rPOL9Cq2YX1BVenIAGxURebrB3jHN9xRdjpA3rDmktSWJCg6WFpPAE8j298E+kZhqlAA6VJF7d4HJhQBttPtecUeo5ikgKu+vUJWVBnSSSTAAHsffG3090gk1alWCQbDTCAMtoH2i8jnbDpOaKSeifP5damX0CkWB5YkAQTJvubxz84V/p/NUhTqZZ1IIOiWiwiwBPIF/O8ecdJq0VEWkFd9xJ5HF7Y5H9YZdaWcYup9GsCYk2Zf1CDIuNQt8Ypjg7cJMVO0N30vX0sUV7BtM8nSY38MIf/AN3EHBXrnT6dSjVpNZGRkJmSLbzzpIF8KtLL1KGlnHeqio6rESoBN+dSz+QPODWZzRrUw7ApTjUF/wAx4JI322B8b4WcWtrsbs5l9N6pem7QVaN4GofFzMR72wQ6lmgU9FET1WJCdtwDuNR4kE/udgSKP1hlRTzKvfTXXvDbBv7yI38HBHprI1NauYqLrPYQ7yywYlRM2YfbsFEDacds6aUw66C/TPpKmKaMtR1JUKxIFvIESIHj23xH/gtNtagjeTz7arxi3ks9TpsIbUosQG2Ox7kb5OzcbYvZzP0ma6MYEDWsnzuabEi/nHFKTTtmoW+t5hqtRFDSWi35gG2wO/4G2LXW6ChUTUAgA1Gdhafm0fy8k4BZasBUeoqsQCQkm97Ak3O39cDOq13AMQYbumZbifj/ALY7oxqooKVDP9X9UWu9MKBoUAidieAI3EfG52wGHUX76xqmnWmy01PcDM939jgd0vKCKru8KFkIzQCSDzDC0QBF8R5YdhcszQYAtY/vPkgfnDqCiqJtMlyNdmadbALK3uRc2jULSTI+bY7NlfqygMu5p5kMyUz/AAyYcPsN5MTeBOObdK6JSHpslRXMEGmCAxdRwwPLbWFjM4LfWlagqp6NNleqwYyzENIib21S0GLjnAeTypCL9jD9O9fVqSUlpPUqSzuFUAbwj6nI2OnYjkXjCb1aq4eolSmfUJfWsgCxYkqQIAIJMXMjfFrp3WK1FQoqxTa2oGNIm8SduCRtHzgQ/UlYHsYksWep5BNze9xANxx8YSM227Fk0yPKUvVpgqwVDJpBvu+4jTqi4sPk284srWq1KdR7EUw2qXOupIiJJkt3avhbztjdshI9HYmWVgsBQvBmbknZbH2jE9fpiDLIZ0IulmJYQzlwpa1xA8HwPfCyezKWqF+tS0MYcsSt42k3gedM/vOL9HOirT9OolR1gl2V40mCNWiwfu0n+d7DE2eYV66sKhqGZZiAvZFtK6dQkkwTMyvM4myVcUzTVmquqAkqB9hMsKcm5YI0nzeIvAUvZoe7A+ao0qOR9QoPULaNUm48gSQGgHxucLVbqrMKc39MEKrXAEkxfcEnnBD6mzDVIJY6VMAH99/O2/t7YXRjswRTjbJzab0MvSHaqwQkKmoNIEBJ5ECwsBtgr0nO+jqFRS9PUwAtfSeBMXkn34OFfKZgDTdR5Jk+bmAT4wW6eT6kqwZjJP6geftMC/HvHzieWO3fRuRZyGXIrmpT1607oQkR8FYPtFr4jrsRWARVggBeRBAuZG45McHGlPNN67EkksVc6fdZMxFryRa4GLfozmKYatIZW11E0ibGBdRpNr6t/acSap7foDVljrko1elRYiijKDcE2ESdNhLHgnc8WwIeiRBOwFo25wTyoK0sygiokAkwVYhTZ7lo4MX/ABvgflidIkgNbbxcX8i398a9aDItjXCtMBI0+bk3/f8AqIx1PpOb9ZxlyfVosodC9PUxlZZdYeCygN3MvG208qdqbpYkFZ08CZEj4jxF4w6/SnUDSMNWFMssTVZtGmYQ0+3SCq9psIFhycSk12Lytm/T+lVKmWzZdI0a0W7AsQglmk3BKgHSFAkWvgF0HNAtlXYEgKgudtTlT+DOGSj1t6j16QKOapKwft7SYsVNjsNhJF+cJPTguioht6agd3MOBptyJJkft52KSabrZbHKKHvMdTpPQGVCglSRrcGE7/u7SWKkfn+WBf0p05BnabWKnUZiNmMWb20n2HxgTnsq4ZyIkGTLcXIk+bG1jtbEj1qtBaQZLJULaSNiVEwx7tLDTbawg74hFMEXb2db6zkUqUypEiINtv25+MA/8JCJTUEgT9rFQ0R27AYk6r1iocuDTpxWIkVSSEprvqLGRJ+0DyRxgLlaGaDL6eZlS0wRMqRdgIEx7725xDJhi5cvRRM26jRJqUsxEhDpZSSQQTeZiYMXPAJ4xJ03rNUVFo0wS9lZZG6tqIkzDRq38jfFqpl8z6TIQrBhAIGgp4OnYnncXG+FLNVKlJmchg+kFiASdSkKTcXkaf3xfDpUUWzp5zTOgRx6XBCGSNVgAdrgzPEYTf8Aqn0gtQLUkI9PvmRIAEFfMRfBPonV/UKKtgoO27nYSDtYsTjzrtSpVEqFNMKxczeCYAvbg+9vzgPL5K/QtUwLlMw2YyVHMISNO4n730liCbQIXTtcx4wWyyKqwizTpgOgNiwe9MC0wIg+Co42RforPVKPr5cSTTfWqzuBeItMj+pweyVUlgA+gMzKZiyknSDvEMSvi+OiaSbSHKH1zQFahp0aakygjhdU+87iY2I9oTOkdRj7izNI0RteS02JiwM/OOj57LilUC1GA1d5MBpGjTbYkCDA98czzSihmiywaZJcDjS09p/2xT6aXKLixRhoVqpUVBS0Ce1gTMb7H9xyRgtQzLEblveB/tiajRpogV1poGJ0u0auLtFwDNiYjFLOpSptpD0m5s7ACeLCD5n3xFvk6SHTKdAJ6BCatZglvtVdywM7kALf59sRJTFPp7VGUFq1XQpO+lbsf/lIn4wSzmfU6kVixjTBAESfEgC8jAnP1kXRTYErTH27/dduRtxisctvaE+4gh0esuYo/wCDpd2ZdvUg7GD9snwokxgFUyij0w9TTqdlMAsCqz3z+oahG2CnVerf+HY0yELMArBiCAYm6tsCo8mfxFDKdLpGvVQPrppTARtUq1RgDvI0gxMbDnDqSpyF5X0HvpXpdKqyCoXVXYqjCD3R+LyRtYxfGZqnTqdTpZenWapRy/arMQSLlmAZREAnT7RGwxR+lulM1RQKj019MVajKSOxlB0TFmKzz741+jO+rWzBETdLCFJMgQLEAACBx4wFrlKzJLsK/U+YFGqaVAgHVOpTfuAAQCLGLyPG2FxUM3XUoWCLHVIG3gxG174m627ai7adRIkLuIt+xOKhotKOWAkyA/3Fd7FrSTcg2iI8YWEdEJHuazEDYxMgSbe3gi+JMsoqU9LExrVRGotcj7REC3n3xrqW47y19QWIYeBuAfwcedAyxBNVxKoZP+mxhgPmL/GDWgqLvYdzZOXytIoykGoyspXdgxUXiYMDb2PjFKnVrim0vb1A8hpDNDAFW3kCQRbjE+cy1TRMMVIaQNpuwNz3bQTx84H5gEBWRlGsWUEkr28sCAYBECJ7rjCKOilUti11gy+kRpQAQIAMbkCf58+22A4wb6ijSSzCQCxGkktaxkDYn/MRH9QuPRw/ic3smyVKWuCR7fGGTo2TBZ1M6ASJiCLMY39hv5wE6TV0kysgm58Dk+9uMM/086h6iLJUKb+wQAki03O/tzvied9opjim9kuYU0cyBRIYtS0wVHMrp99ok74q5tHpwhJU1AC42FmMGdRBsJ43I5MzVK5OYDqoAQBRaREmN9+Tix9R10FdGpoqEMdfYSN/8uxF9R5uNoxyR7SYzrpA+lXZS6iSI0mNyDxB+MQVnAklFIBAPuTJuLcD+nnG3ql0gafuPfMMfaJ28TexvxiDOU4e1+1CSbQfb82/Jw6irYnC0Gs1SUUgVBCG+wImYuw2twfa18R6ggC1HaooH2hp/nJifI/ngm7r/hCSIcppkH70AnR5OwMkR28RaHKdMWplyWqaKaqurSs2LwLiCzB4seLcYg6XdglCmFPpjJPUqKSCEtpNM6W3lu6LnchTsOI2G1coEr5mmpNneYNnW7SY3BW5O3PGGX6Pol29Onl0qFZao3qlVWwABEH1Lyw2MW4vRyVKOp5qhMgKacmIh1IkBtgNX/198LCDkNCPLQLpu4puoDMqhVYkA9rXXVzOokA3nBLrvUjmaDD0wrUgHYg3BB+4WEyJn/hwvdNrlaKmoYDMh02OtY3A5KlDv5w9Z3p9OhS1uyansPTaRVQjkBYXgwST840lxYy06B+ez9WF/iOlN0XUAR3NaDLGJEeZtsYwWoZ2okQPVCoIl4hL6BILIS0zxGmNhOKPQFNTJ+lUK6gWgKQQRpFxx90zyIONvprLmrlSrV6utGI9JPIMHcgWiePxhIU5NIrq7Qcpdf1qFNGuraRNpjULe8bf7YTfqqppJ0uWD9piJXX27weYN8T9Sy+aZC1IMlNwoful20EoZ9yAD22I5OBWay5pqahqgSQChIvcgGBcEASdsGMeMxk6GLo1KnoRrlghmRs2oAd0j5k/GCtPp+mnXVnkEiRBkjTOm/leI8YWfohhmcw9EI6gqSe7SSFg6ttp4P8AscNOT6fUUA1KbEanCF2hhA0ie4D7QNv3wmbG0rA5W6OefUaPlc3TrAA6wA8jtJn+h/thgo0i1JKhGlHlLSPuYhTYcMBfzHvIz63yJIKyWIBZSReVibjcXtc/PmX6O6mlfJnLVXAbV2XIeTBkGYkRYf8A7jpjcsafxoMWEeuZlKlFWLBKjfwiWU2ZXCvBHs7G+8CMIvUuklkqPuUu3sJ06drkWJOwHzhtFOm1WijSJCs67EVEJptDR2lhFxJm/sIvqeqqCFQpTUENpMlxsd/bk+BhlLhJJGf7KX011JWpqrGDcMRYng6iDcHG9bICqxLCoYOkFFJBA9/MzOAXR6qUjI831c2jYRb2+MHsj1TQgBNzc3U3Jk7mecLl8ZNxMpFbOktUUVANbku4ufeDO0AHbgjFeooqS7LG5kHnkf8AbFatUD1ahB0fpCk3F9J8jzzzjajTZEQST6rHYcC3Bna5kbHDcKRJm+XrD1AmsIhQk+otmj9IgHckX9j8EfkVdVeqVimZKkg6ZJIULN7gEQfF9sGhR1d9FkLtIUzFtm1KZtEj3vvGM6qCAiNTX0kKk6Z0tsAI/SPut5ODGaWqAmi7XpmhkKtSTqdUXVO5caWgzYBTA8BTPEy/TVAplgxsHk/1W0ewB/OAPX86xy9GhadbPAH+Uemo8yTrNrGRGG6l0zSFQWKqEkT+kBZ38rP5ONk1j322UfQq9UoBKgBfVIkEiNidr7R5i/nfFqjnFdlbRqSkDqBb7gRA+L4G9YzCNXYjUVUkTvIFp/YE8/jG+UpXYBNjqJIkAKRv8krbB4+KsS/RnUcyGiGPZYTwNhG0DbA85mo+mnqIUmDH6bCSTYwSOdp3GJaz++oERbknzyIufxaZxplXLBUVIYHuJJOsE2kcRtb2w8dIWeRobs1SSmopiXV47QZAEiw/9ptNwJJHOAvWh/HehSJCaiABwQAhNh4AHJwT6pUBqUFAGoUhqEkjUZHtMKI5nzgPJSq72FvMRuDH4xCMtX7KTkuKBn1FkynqB3ZzTZVVimkEMoaJt3XuCO2B5MAaQJIAvJ2wU6znjVE8u5c2sd73E2mPG2BdFiGB8Xtj0cV8dnKEMpRkmLBTJj2NycNfSM6r5quxplAyrpU3MQtyQLzZiffnC507OFWJ3kGPaZI3+TbBbobilXLC0CDIM3AIgfEG28Y58j7sticU0WOrZk+pSqppLFzUZVjSG1AhPEqN+O4YJf8AUOokUygEmpJaIjUpbTxzJ2/tin9X06VMUBRYNrL1GvsW0iBYEAaTvN8DOuUZpwpJ0lT7nUCJA523FtsRircWF2maZGifTpuwZVYsNZ+1oJEfiBcY261VD1HYzTJAaEJICGLD9/jE2VIbI0gNXbVlpPJ1bX2943J+cDutytVp2NOBxa9v3GKRjcmw8fGw902kBQ19zIKY1Dj1ChWR7AlTG1hIw4/RldDkYZdNMamdiVGrUBK7aogCRNz7YQ+i58ek4vZGIHBNjf8A+Me2+Gf6V6Oc1Q/8300UFWp6yADurb8CRJH9MRzJK2x5KOmuwx9M9OepVrJlqzUMuCCWn+I4ZYU3sqzyRJA/OBWfyHpdQqowKBqagESxO66pMyZvJOC1Lri5enTIX1q1UST+oatQQsJH6VUEWkA7YCdbr1DnVNSslV1pgsqLAQgzAgkbnVY4MWrpGxryAKErToKN6TuuoWkLqWP/ALfiPfHSfo8FqDwNKKoKpVe5IlifAMXsBx745tR0o9QsO2nmiSCdwZJEHgxvjoucpZcpUyyB6VVe+mkhUY6bLpmbowvuYmbW2RK9iy7A/QHZK2bpDTqSszb7q0PIi57Sdp3GJ8jXrClmKdJaQFOox1VGkrs57ANoqbyCb8YDdPr1MpnFkFmqUhzuVlAPaBpgn2wQzvW6lPNVWVBpdEaon6pgob82VQcQkvLl8oaT6YU6r0+syr/iMyxBcFNI0BiAJBAH2mFi5O9zNlXPfTiCo8iFciCkKL73SAfB5uZx0DolcV8pSYlZFmn2lbAzvHt7YXPqGto9NCthO5IYi3zeAOBONLI1kq+w0uxZ6lkHpaTr9QLdzOx1FGXy4BVTOxDD3w+ZPrYcFnpoagEMwkBYJYdukgW5HjCr1FaAijTfSDUB1dxDhwyTxCyKIiNw2GjoWVbM5EKwU1Kb94Y6WAUBACVG2kAWO2LtckZ9A/q9N6i1WdHsLIWEpJGoxzvhF+ls1/hs7DwEJMk+D+qT4N/xhz6v0t6JV1QGmwDrZrRwNY1GLbxPjCN9SK7VhUnc+RNze3t/LAxNNuD9mSoN0KtVw7NOssatG0TpYswBPkczbBPMZxCmtQrUqgDxp7iCI2iBF7De+84ioVUahT7x2NMkgKZPd/UfyxWoZioVrUt9Pegj9JnUDEgQZI+PjCSXJfwNVoqUumIv2KqRABgkx/cx5k74np5ymkqrGxvqW84DrUY1GTVukgHg288+3vgfSzzgXYTztb29/nFFib7Y0UkaU8yAhGgNJmTIInneP3wayXVWRSophxTplAT+kG7R+APiPfAPK0HLgUgdS9x2gQffweMWFBpowJu8XHj/AIcUmk9HPvsv0K9MFDTUaqjnsDMWTmZ4BmYk2mcFZQZbWmoVKesuh1QyiTqm+mQAd/E8wv8AT6Oqoukxa1+Taf5xglmsvArBNkVQCf1G5aAd2KlbfjnEZJN0aMSj0Cmcxm6ICkgODpmbKdemTxNvzh6+pmrUKBcOoAQCLTqJuRMk7xY/0wp/9OHUV2eoANKkEMSIkg6hySIwQ+v+sCqiIgH3FtQ/UAO0eeZ8WGHybyKAzegJ9OqdVR2+2mhJm0FiF23NptizU6yAlZFEgtCHkj35tAn53wP6ctQUzUVSAD3H9PsL788HbGy5fSQ3cdY+3ZgJg7zeSSLccYdq2xLd6K6sCIEgW/f++5tgz0LKoIZy8QVJkNveYIsPa/zijlKt6ihtJViApHcSYEkixAAnFwsyB6gpfcCZpiwgGTtZYBN4thZp1SEit7Jep5pVrO6aiVAWTETB2jcQbGBfi2AGez06oi+/kQI3/czjMxmGeRO7T4BO1/xgfnKLaB2k334/5thoY1asabtFOpW4WyxEfmf9sR0x7fGN6lTvkxtG2PAf9Nid+PjxjuWkRCOVIOlSwAF5ieP+fucX8jXP+IJTkDiZsAZ83m38+cDcsovPiJAkA+PMRf8A/MEcuyiqAoA7ACo+L7zIMzjlmlsfGgr1oJ6dIx/E9aCxP6dB7QNokT54wM6mYHqKzakKhSeLW+IvvO0YtZrPdyI3cobUg2AJ3/lfEHVUUZUy0MQNKyIY67sQDeADE7YljtcUUlskq9RDZZVuHLBqnaNIuSNMbDuMg84HdcMm5nSpHx3GP64uZf06k06YaCAtIMRJbtN//tzz7YjzWTLHSWWyaZjYg/z8XjFYtRezR/FlDpVRRck7XHngj9sOH0l1N0XUEUgNB4IMWPk8/sMLeU6YsMNRkW7pFzxHMH/hwa6RRKUnipwDCmdXBBHi9weMT+ocZJmd6Oj1MqalFmNUNpUEMYLDSWM/Bnm/GFD6mzmqoGGif8O5LoILkbavwAMHPozOrodSbaLxsnBEHfeRxhN+oX01WXcem4HxMjxsMcX09/dSY8JbTIatXU+YlSob0qh5MWDGRbgm5wzdD60Eq05DEps0AA2KCZI2kfgcRhXNQVGcqfuymn3LKCymPcAftiak6ovaDNVImY03BiPwMdWeN0HJpWXvq3PerUpZkWZappkTFipKmOCNBH7Y96wzU2oNCkOrBj5J7wOSIUW35xR61Po1EQHQiipEWUqwO97xPO2B1fqJdaYaewqQdrbfyDG+EjDlGL+LRO24nSf+n+aH+GqU0ntM91yJiRtgL1J5qOGlmKsotJPudzNv5Y1+laFWjmA6uppVFlr7yNQJ/wBQ2xbz6UlzJZp1cMH2mYsQZIBnE5pVaLRVxsDdXrFqCNUYEp2Bl/y9rLI/SBKm3IwT6P1bM6f4NXS1RBUEEBWKk61OqIA/tgf6wVKlJxIKshPkoSFYgf6SAD5vij0vN1UplkKhqZFdQRNiCGQe+oX4viuP2ghnL9TqMo1B7WIAJIEE+DaMCvquqmaRSqKjKgXY9xBBmeSVJ/8Aw4Lvm6tUCpSJpSsF11SwOykBogFSBPj3wD6rnalIS7amAAsQeSADG/59sSx6na7ASfR/VKZDUaigrU7BsAAbMSPgg/gYuUKj5dhUPdpLUqomdSbE2N/0sPacKGRrtRq2kQ025/7YZ89X1sVEKtQKCJnbdreVEW8Y6sip2NdKwXXRSwqKxnXJLC+ltubwsfOPepBg500Uqar6im/HBjjBUZRalEqCFIMGd5402iMWUzFJRpY3FrWH9ccss+9KznnPYv8ATqbaNSISpaJBN/IBiNgBtv5xTzKBWvItceRvH8h+2MxmOpfnRRLVkmWGkmAe7giwAGN89mB6QpoSbmTeL7mDtP8A2tj3GYKVsLikiSnUIoqWbucteIJWyyI8nXM+BitkumvXqenSEyDoDcgSd7Dgj/bGYzBerZKthPO5ZqWWRNGnlmVtiwlQ17Hxgb1bqzd+m4YINRMt2fqn9JmRbicZjMbGk+xpaNenVvUpS9RixJHxICxPwZG0Hg74OVc0yU5IBLCCDKkL9uqVaxlJsPneBmMxsi8gLYK6jklpABCCYBJ5DXESN+D+2KFWqyXWVU2YgwYjz4nxjMZgRe9hl7AVYyx+cYpg3mOYxmMx3HOE6qaSfThltf5499/wcT1M7qdREEKs8z2hf7Y9xmOfimUx+i31SrqXLkfcraSfIuQfO0Yo1FBpVYVTcS3Ihj42kcm1vjGYzA6X/fJWS2XukOnpuI7tJ0kzJJ/ltIxUzWr0tRMgk33mf9749xmJt1P+/wDsSTrRZ+mVDMskwpE/3jBLoEK9QP8AaWgAi0yJnxbGYzC/ULTRRKooZugVESqVpvMIe42Fu7TJB4i/zGFTrVao9bU5JlHgxbwY+LfFsZjMQwKshoLoh6QoFPLPAP30z54iPxq/ng39PVKJksGDiFlTAIEWsPbGYzFvql4s2T8UM9LoPr0aoQEI6sLmQpg2BFxuDB845p03IvVohqaMzoDq8KsbmeQQf3xmMxLD4Y21+hYx8Q50Oq4NNwwAMNpYxIncCL2Jv7DFv6ncNW21KpUm/tt7b8YzGYVdsbG7iyhWrNDFQdWrUSPG554XV+wxX6bnR6iyAqxpaQD2vIJv/qiRtjMZiuNJoawglSqilAzEUyQVB22KsFkwCsG35xQzrBxpYR3C/LR88W2EYzGYX+qxn0DurUdK038uwJtMAJA/mcEMjmgS2knUtMhSdzYGLbxP8sZjMWa5Q2Izc5liQ0drD2uY8jbFLMZ0qYifyMZjMShBOVUc0ls//9k="
}

3条回答
欢心
2楼-- · 2019-04-21 16:02

The images encoding should come from the client, this is how you can know which format of each one has. Example:

base_64 = "......

You will receive it from the client and you know that is a .gif

Once you have validated the extensions and the base64 you can convert it to images and save it in your OS:

Convert string in base64 to image and save on filesystem in Python or Decoding base64 from POST to use in PIL

Once you have the images in your OS, you can link them to your ImageField in the model changing the name property: Set Django's FileField to an existing file

I hope that is clear and helpful!!

查看更多
一纸荒年 Trace。
3楼-- · 2019-04-21 16:08

Short answer is :

import imghdr
extension = imghdr.what(file_name, decoded_file)

ref : https://docs.python.org/2/library/imghdr.html OR https://docs.python.org/3/library/imghdr.html

Basically import imghdr is the key in function Base64ImageField.get_file_extension to get / extract the extension of the function.

With below class extend / code you don't need to do modelJob.instance.imageA.save(content=content,name="image.jpeg")

You need to add this class in your codebase to call or for trial purpose you can add in same Serializer class file itself.

from django.core.files.base import ContentFile
import base64
import six
import uuid

class Base64ImageField(serializers.ImageField):
    """
    A Django REST framework field for handling image-uploads through raw post data.
    It uses base64 for encoding and decoding the contents of the file.

    Heavily based on
    https://github.com/tomchristie/django-rest-framework/pull/1268

    Updated for Django REST framework 3.
    """

    def to_internal_value(self, data):                
        # Check if this is a base64 string
        if isinstance(data, six.string_types):
            # Check if the base64 string is in the "data:" format
            if 'data:' in data and ';base64,' in data:
                # Break out the header from the base64 content
                header, data = data.split(';base64,')

            # Try to decode the file. Return validation error if it fails.
            try:
                decoded_file = base64.b64decode(data)
            except TypeError:
                self.fail('invalid_image')

            # Generate file name:
            file_name = str(uuid.uuid4())[:12] # 12 characters are more than enough.
            # Get the file name extension:
            file_extension = self.get_file_extension(file_name, decoded_file)

            complete_file_name = "%s.%s" % (file_name, file_extension, )

            data = ContentFile(decoded_file, name=complete_file_name)

        return super(Base64ImageField, self).to_internal_value(data)

    def get_file_extension(self, file_name, decoded_file):
        import imghdr

        extension = imghdr.what(file_name, decoded_file)
        extension = "jpg" if extension == "jpeg" else extension

        return extension

One more information is you can have

Base64ImageField(
        max_length=None,
        use_url=True,
        required=False,
        allow_null=True,
        allow_empty_file=True
    )

these params in case you want to make this optional.

NOTE :: I had got this code from StackOverflow only, but not remembered from where I got this I had liked this answer too.

查看更多
We Are One
4楼-- · 2019-04-21 16:11

Here is how I solved this problem. None of the answers above had this information

However there are two problems with this approach first of all I do not know the extension.How do I extract an extension ?

The extension can be extracted by using the following code

from PIL import Image
decodedbytes = base64.decodebytes(str.encode(image_content))
image_stream = io.BytesIO(decodedbytes)
image = Image.open(image_stream)
filetype = image.format #Contains the extension

The next thing is Ill have to check for imageA,B,C,D and E if they exist and then save each one individually. If I could come up with a dynamic solution close to something that I have that would work as well. The solution to this was simple to use

getattr(job_inst, field).save(content=data , name="img"+filetype)
查看更多
登录 后发表回答