Is there a difference between generating multiple numbers using a single random number generator (RNG) versus generating one number per generator and discarding it? Do both implementations generate numbers which are equally random? Is there a difference between the normal RNGs and the secure RNGs for this?
I have a web application that is supposed to generate a list of random numbers on behalf of clients. That is, the numbers should appear to be random from each client's point of view. Does this mean I need retain a separate random RNG per client session? Or can I share a single RNG across all sessions? Or can I create and discard a RNG on a per-request basis?
UPDATE: This question is related to Is a subset of a random sequence also random?
I would recommend using a single generator multiple times. As far as I know, all the generators have a state. When you seed a generator, you set its state to something based on the seed. If you keep spawning new ones, it's likely that the seeds you pick will not be as random as the numbers generated by using just one generator.
This is especially true with most generators I've used, which use the current time in milliseconds as a seed.
As people have already said, it's much better to seed the PRNG once, and reuse it. A secure PRNG is simply one which is suitable for cryptographic applications. The only way re-seeding each time will give reasonably random results is where it comes from a genuinely random "real world" source - ie specialised hardware. Even then, it's possible that the source is biased and it will still be theoretically better to use the same PRNG over.
It's worth mentioning that Haskell is a language which attempts to entirely eliminate mutable state. In order to reconcile this goal with hard-requirements like IO (which requires some form of mutability), monads must be used to thread state from one calculation to the next. In this way, Haskell implements its pseudo-random number generator. Strictly speaking, generating random numbers is an inherently stateful operation, but Haskell is able to hide this fact by moving the state "mutation" into the bind (
>>=
) operation.This probably sounds a little abstract, and it doesn't really answer your question completely, but I think it is still applicable. From a theoretical standpoint, it is impossible to work with a RNG without involving state. Regardless, there are techniques which can be used to mitigate this interaction and make it appear as if the entire operation is of a stateless nature.
Well, as long as they are seeded differently each time they're created, then no, I don't think there'd be any difference; however, if it depended on something like the time, then they'd probably be non-uniform, due to the biased seed.
It's generally better to create a single PRNG and pull multiple values from it. Creating multiple instances means you need to ensure that the seeds for the instances are guaranteed unique, which will require incorporating instance-specific information.
As an aside, there are better "true" Random Number Generators, but they usually require specialized hardware which does things like derive random data from electrical signal variance inside the computer. Unless you're really worried about it, I'd say the Pseudo Random Number Generators built into the language libraries and/or OS are probably sufficient, as long as your seed value is not easily predictable.
Hardware-based, true [1], random number generators are possible, but non-trivial and often have low mean rates. Availablity can also be an issue [2]. Googling for "shot noise" or "radioactive decay" in combination with "random number generator" should return some hits.
These systems do not need to maintain state. Probably not what you were looking for.
As noted by others, software systems are only pseudo-random, and must maintain state.
A compromise is to use a hardware based RNG to provide an entropy pool (stored state) which is made available to seed a PRNG. This is done quite explicitly in the linux implementation of /dev/random [3] and /dev/urandom [4].
These is some argument about just how random the default inputs to the /dev/random entropy pool really are.
Footnotes: