I am trying to render as realistically as possible a scene in which a point light hits an object and bounces off with the same angle wrt the normal of the face (angle of incidence = angle of reflection) and illuminates the scene elsewhere.
Now, I know reflection in threejs is normally dealt with CubeCamera
-material as per the examples I found online, but it doesn't quite apply to my case, for I may be observing the scene from a point in which I might not be able to observe the reflection of the object on the mirror-like surface of another one.
Consider this example prototype I'm working on: if the box that is protruding from the wall in the scene had a mirror-like material (accomplished with a CubeCamera
), I wouldn't be able to see the green cube's reflection on the bottom face unless the camera was at a specific position; in real life, however, if an object illuminated by a light source passes in the vicinity of another one, it will in part light it as if it were a light source itself (depending on the object's index of reflectivity, of course) and such phenomenon should be visible from any point of view the object receiving indirect lighting is visible from.
Hence I came up with the idea of adding a PointLight
to the cube, but this of course produces undesirable effects on the surroundings.
I will try to illustrate my goal with the following sequence:
1) Here, the far side of what I will henceforth refer to as balcony is correctly dark, while the areas marked with a red 'x' are the consequence of the cube having a child PointLight
which shines in all directions.
2) Here, the balcony's far face is still dark and the bottom one is receiving even more light as the cube passes by, which is desirable, but the wall behind the cube should actually be dark (I haven't added shadows yet, I first want to get the lighting right), as well as the ground beneath it and the lamp post.
3) Finally, when the cube has passed the balcony, it's just plain wrong for the balcony's side and bottom face to be illuminated, for we all now that a reflected ray does not bounce back the way it came from. Same applies to the lamp post.
Now I realize that all the mistakes that occur are due to the fact that the cube emits light itself, what I'm hoping you can help me with is determining a way to produce physically accurate reflected rays.
I would like to avoid using ambient light or other hacks to simulate real-life scenarios and stick to physics as much as possible; I suspect what I want to achieve is very computationally heavy to render, let alone animate in a real-time use case, but that's not an issue for I'm merely trying to develop a proof-of-concept, not something that should necessarily perform fast.
From what I gather, I should probably be writing custom vertex and fragment shaders for the materials receiving indirect illumination, right? Unfortunately I wouldn't know where to begin, can anyone point me in the right direction? Cheers.
If you do not want to go to the Volumetric rendering then you have 3 options (I know of)
ray-tracing
you have to use ray-trace rendering (back ray-trace) to achieve this. This will also cover shadows,transparent materials,reflected illumination and much more if coded properly. Unless you want to do also precise atmospheric scattering then this is the way.
If the casted ray hits any obstacle then its color is changed (due to obstacle property) and new ray is casted as reflected light ray. If material is transparent then also refracted ray is casted ... Each hit or refraction affect light intensity so you stop when intensity is lower then some treshold or on some layer of recursion (limit max number of refractions per ray) to avoid infinite loops and you can manipulate performance/quality ...
standard polygon rendering
With this approach (I think you are using it right now) you have to improvise. The reflection and illumination effects can be done similar to shadowing techniques. For each surface you have to render the scene in reflected direction. The same can be done with shadows but then you just rendering to the light direction or use shadow map instead. If you have insane number of reflective surfaces then this approach is not the way also to achieve reflection of refraction you have to render recursively making it multiple rendering pass per polygon which is also insane.
cubemap
You can use cube map per each object. It is similar to bullet 2 but the insanity is done just once while generating cubemaps instead of per frame ... If you have too much objects then this is also not the way. You can use cube map only for objects with reflective surfaces to make it manageable. Also if the objects are moving then you have to re-generate cubemaps once in a while ...