I'm trying to find a way to put as much hexagons in a circle as possible. So far the best result I have obtained is by generating hexagons from the center outward in a circular shape.
But I think my calculation to get the maximum hexagon circles is wrong, especially the part where I use the Math.ceil()
and Math.Floor
functions to round down/up some values.
When using Math.ceil()
, hexagons are sometimes overlapping the circle.
When using Math.floor()
on the other hand , it sometimes leaves too much space between the last circle of hexagons and the circle's border.
var c_el = document.getElementById("myCanvas");
var ctx = c_el.getContext("2d");
var canvas_width = c_el.clientWidth;
var canvas_height = c_el.clientHeight;
var PI=Math.PI;
var PI2=PI*2;
var hexCircle = {
r: 110, /// radius
pos: {
x: (canvas_width / 2),
y: (canvas_height / 2)
}
};
var hexagon = {
r: 20,
pos:{
x: 0,
y: 0
},
space: 1
};
drawHexCircle( hexCircle, hexagon );
function drawHexCircle(hc, hex ) {
drawCircle(hc);
var hcr = Math.ceil( Math.sqrt(3) * (hc.r / 2) );
var hr = Math.ceil( ( Math.sqrt(3) * (hex.r / 2) ) ) + hexagon.space; // hexRadius
var circles = Math.ceil( ( hcr / hr ) / 2 );
drawHex( hc.pos.x , hc.pos.y, hex.r ); //center hex ///
for (var i = 1; i<=circles; i++) {
for (var j = 0; j<6; j++) {
var currentX = hc.pos.x+Math.cos(j*PI2/6)*hr*2*i;
var currentY = hc.pos.y+Math.sin(j*PI2/6)*hr*2*i;
drawHex( currentX,currentY, hex.r );
for (var k = 1; k<i; k++) {
var newX = currentX + Math.cos((j*PI2/6+PI2/3))*hr*2*k;
var newY = currentY + Math.sin((j*PI2/6+PI2/3))*hr*2*k;
drawHex( newX,newY, hex.r );
}
}
}
}
function drawHex(x, y, r){
ctx.beginPath();
ctx.moveTo(x,y-r);
for (var i = 0; i<=6; i++) {
ctx.lineTo(x+Math.cos((i*PI2/6-PI2/4))*r,y+Math.sin((i*PI2/6-PI2/4))*r);
}
ctx.closePath();
ctx.stroke();
}
function drawCircle( circle ){
ctx.beginPath();
ctx.arc(circle.pos.x, circle.pos.y, circle.r, 0, 2 * Math.PI);
ctx.closePath();
ctx.stroke();
}
<canvas id="myCanvas" width="350" height="350" style="border:1px solid #d3d3d3;">
If all the points on the hexagon are within the circle, the hexagon is within the circle. I don't think there's a simpler way than doing the distance calculation.
I'm not sure how to select the optimal fill point, (but here's a js snippet proving that the middle isn't always it). It's possible that when you say "hexagon circle" you mean hexagon made out of hexagons, in which case the snippet proves nothing :)
I made the hexagon sides 2/11ths the radius of the circle and spaced them by 5% the side length.