Matplotlib equivalent of pygame flip

2019-04-06 13:20发布

I have a program with rapid animations which works perfectly under pygame, and for technical reasons, I need to do the same using only matplotlib or an other widespread module.

The program structure is roughly:

pygame.init()        
SURF = pygame.display.set_mode((500, 500))
arr = pygame.surfarray.pixels2d(SURF) # a view for numpy, as a 2D array
while ok:
    # modify some pixels of arr
    pygame.display.flip()
pygame.quit()

I have no low level matplotlib experience, but I think it is possible to do equivalent things with matplotlib. In other words :

How to share the bitmap of a figure, modify some pixels and refresh the screen ?

Here is a minimal working exemple, which flips 250 frames per second (more than the screen ...) on my computer :

import pygame,numpy,time
pygame.init()
size=(400,400)        
SURF = pygame.display.set_mode(size)
arr = pygame.surfarray.pixels2d(SURF) # buffer pour numpy   
t0=time.clock()

for counter in range(1000):
        arr[:]=numpy.random.randint(0,0xfffff,size)
        pygame.display.flip()      
pygame.quit()

print(counter/(time.clock()-t0))

EDIT

What I try with indications in answers :

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation

fig = plt.figure()


def f(x, y):
    return np.sin(x) + np.cos(y)

x = np.linspace(0, 2 * np.pi, 400)
y = np.linspace(0, 2 * np.pi, 400).reshape(-1, 1)

im = plt.imshow(f(x, y), animated=True)

count=0
t0=time.clock()+1
def updatefig(*args):
    global x, y,count,t0
    x += np.pi / 15.
    y += np.pi / 20.
    im.set_array(f(x, y))
    if time.clock()<t0:
        count+=1
    else:
        print (count)
        count=0
        t0=time.clock()+1     
    return im,

ani = animation.FuncAnimation(fig, updatefig, interval=50, blit=True)
plt.show()

But this only provides 20 fps....

4条回答
爷的心禁止访问
2楼-- · 2019-04-06 13:35

It should be noted that the human brain is capable of "seeing" up to a framerate of ~25 fps. Faster updates are not actually resolved.

Matplotlib

With matplotlib and its animation module the example from the question runs with 84 fps on my computer.

import time
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation

fig, ax = plt.subplots()


def f(x, y):
    return np.sin(x) + np.cos(y)

x = np.linspace(0, 2 * np.pi, 400)
y = np.linspace(0, 2 * np.pi, 400).reshape(-1, 1)

im = ax.imshow(f(x, y), animated=True)
text = ax.text(200,200, "")

class FPS():
    def __init__(self, avg=10):
        self.fps = np.empty(avg)
        self.t0 = time.clock()
    def tick(self):
        t = time.clock()
        self.fps[1:] = self.fps[:-1]
        self.fps[0] = 1./(t-self.t0)
        self.t0 = t
        return self.fps.mean()

fps = FPS(100)

def updatefig(i):
    global x, y
    x += np.pi / 15.
    y += np.pi / 20.
    im.set_array(f(x, y))
    tx = 'Mean Frame Rate:\n {fps:.3f}FPS'.format(fps= fps.tick() ) 
    text.set_text(tx)     
    return im, text,

ani = animation.FuncAnimation(fig, updatefig, interval=1, blit=True)
plt.show()

PyQtGraph

In pyqtgraph a higher framerate is obtained, it would run with 295 fps on my computer.

import sys
import time
from pyqtgraph.Qt import QtCore, QtGui
import numpy as np
import pyqtgraph as pg

class FPS():
    def __init__(self, avg=10):
        self.fps = np.empty(avg)
        self.t0 = time.clock()
    def tick(self):
        t = time.clock()
        self.fps[1:] = self.fps[:-1]
        self.fps[0] = 1./(t-self.t0)
        self.t0 = t
        return self.fps.mean()

fps = FPS(100)

class App(QtGui.QMainWindow):
    def __init__(self, parent=None):
        super(App, self).__init__(parent)

        #### Create Gui Elements ###########
        self.mainbox = QtGui.QWidget()
        self.setCentralWidget(self.mainbox)
        self.mainbox.setLayout(QtGui.QVBoxLayout())

        self.canvas = pg.GraphicsLayoutWidget()
        self.mainbox.layout().addWidget(self.canvas)

        self.label = QtGui.QLabel()
        self.mainbox.layout().addWidget(self.label)

        self.view = self.canvas.addViewBox()
        self.view.setAspectLocked(True)
        self.view.setRange(QtCore.QRectF(0,0, 100, 100))

        #  image plot
        self.img = pg.ImageItem(border='w')
        self.view.addItem(self.img)

        #### Set Data  #####################
        self.x = np.linspace(0, 2 * np.pi, 400)
        self.y = np.linspace(0, 2 * np.pi, 400).reshape(-1, 1)

        #### Start  #####################
        self._update()

    def f(self, x, y):
            return np.sin(x) + np.cos(y)

    def _update(self):

        self.x += np.pi / 15.
        self.y += np.pi / 20.
        self.img.setImage(self.f(self.x, self.y))

        tx = 'Mean Frame Rate:\n {fps:.3f}FPS'.format(fps= fps.tick() ) 
        self.label.setText(tx)
        QtCore.QTimer.singleShot(1, self._update)


if __name__ == '__main__':

    app = QtGui.QApplication(sys.argv)
    thisapp = App()
    thisapp.show()
    sys.exit(app.exec_())
查看更多
对你真心纯属浪费
3楼-- · 2019-04-06 13:42

If you just need to animate a matplotlib canvas the animation framework is the answer. There's a simple example here that does basically what you ask.

If this is going to be part of a more complex application you probably want finer control over a specific backend.

Here's a quick attempt using Qt loosely based on this matplotlib example.

It's using a QTimer for the updates, probably there's also some idle callback in Qt you could attach to.

import sys

import numpy as np
import matplotlib as mpl
mpl.use('qt5agg')
from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas
from matplotlib.figure import Figure
from PyQt5 import QtWidgets, QtCore

size = (400, 400)

class GameCanvas(FigureCanvas):
    def __init__(self, parent=None, width=5, height=4, dpi=100):
        fig = Figure(figsize=(width, height), dpi=dpi)

        self.axes = fig.gca()
        self.init_figure()

        FigureCanvas.__init__(self, fig)
        self.setParent(parent)

        timer = QtCore.QTimer(self)
        timer.timeout.connect(self.update_figure)
        timer.start(10)

    def gen_frame(self):
        return np.random.randint(0,0xfffff,size)

    def init_figure(self):
        self.img = self.axes.imshow(self.gen_frame())

    def update_figure(self):
        self.img.set_data(self.gen_frame())
        self.draw()

class ApplicationWindow(QtWidgets.QMainWindow):
    def __init__(self):
        QtWidgets.QMainWindow.__init__(self)
        self.main_widget = QtWidgets.QWidget(self)

        dc = GameCanvas(self.main_widget, width=5, height=4, dpi=100)
        self.setCentralWidget(dc)

    def fileQuit(self):
        self.close()

    def closeEvent(self, ce):
        self.fileQuit()

app = QtWidgets.QApplication(sys.argv)
appw = ApplicationWindow()
appw.show()
sys.exit(app.exec_())

One thing you should be careful with is that imshow computes the image normalization on the first frame. In the subsequent frames it's calling set_data so the normalization stays the same. If you want to update it you can call imshow instead (probably slower). Or you could just fix it manually with vmin and vmax in the first imshow call and provide properly normalized frames.

查看更多
对你真心纯属浪费
4楼-- · 2019-04-06 13:45

If you want to animate a plot, then you can take a look at the animation functionality in matplotlib under matplotlib.animation.Animation. Here's a great tutorial - https://jakevdp.github.io/blog/2012/08/18/matplotlib-animation-tutorial.

If you just want to periodically update an adhoc bitmap, I am not sure matplotlib is meant for what you are trying to achieve. From matplotlib docs:

Matplotlib is a Python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments across platforms.

If you would like to periodically update an adhoc image on the screen, you may want to look into GUI libraries for python. Here is a short summary of available options - https://docs.python.org/3/faq/gui.html. Tkinter is a pretty standard one and is shipped with python. You can use the ImageTk module in pillow to create/modify images for displaying via Tkinter - http://pillow.readthedocs.io/en/4.2.x/reference/ImageTk.html.

查看更多
Explosion°爆炸
5楼-- · 2019-04-06 13:48

Given you talked about using widespread modules, here's a proof of concept using OpenCV. It runs pretty fast here, up to 250-300 generated frames per second. It's nothing too fancy, just to show that maybe if you're not using any plotting feature matplotlib shouldn't really be your first choice.

import sys                                                                                 
import time                                                                                
import numpy as np                                                                         
import cv2                                                                                 

if sys.version_info >= (3, 3):                                                             
    timer = time.perf_counter                                                              
else:                                                                                      
    timer = time.time                                                                      

def f(x, y):                                                                               
    return np.sin(x) + np.cos(y)                                                           

# ESC, q or Q to quit                                                                      
quitkeys = 27, 81, 113                                                                     
# delay between frames                                                                     
delay = 1                                                                                  
# framerate debug init                                                                     
counter = 0                                                                                
overflow = 1                                                                               
start = timer()                                                                            

x = np.linspace(0, 2 * np.pi, 400)                                                         
y = np.linspace(0, 2 * np.pi, 400).reshape(-1, 1)                                          

while True:                                                                                
    x += np.pi / 15.                                                                       
    y += np.pi / 20.                                                                       

    cv2.imshow("animation", f(x, y))                                                       

    if cv2.waitKey(delay) & 0xFF in quitkeys:                                              
        cv2.destroyAllWindows()                                                            
        break                                                                              

    counter += 1                                                                           
    elapsed = timer() - start                                                              
    if elapsed > overflow:                                                                 
        print("FPS: {:.01f}".format(counter / elapsed))                                    
        counter = 0                                                                        
        start = timer()                                                                                                
查看更多
登录 后发表回答