I am using data grids as my primary "database". I noticed a drastic difference between Hazelcast and Ignite query performance. I optimized my data grid usage by the proper custom serialization and indexes, but the difference is still noticeable IMO.
Since no one asked it here, I am going to answer my own question for all future references. This is not an abstract (learning) exercise, but a real-world benchmark, that models my data grid usage in large SaaS systems - primarily to display sorted and filtered paginated lists. I primarily wanted to know how much overhead my universal JDBC-ish data grid access layer adds compared to raw no-frameworks Hazelcast and Ignite usage. But since I am comparing apples to apples, here comes the benchmark.
I have reviewed the provided code on GitHub and have many comments:
Indexing and Joins
Given the above, Ignite indexes will take a bit longer to create, especially in your test, where you have 7 of them.
Fixes in TestEntity Class
In your code, the entity you store in cache, TestEntity, recalculates the value for idSort, createdAtSort, and modifiedAtSort every time the getter is called. Ignite calls these getters several times while the entity is being stored in the index tree. A simple fix to the TestEntity class provides 4x performance improvement: https://gist.github.com/dsetrakyan/6bfe089d53f888448503
Heap Measurement is Not Accurate
The way you measure heap is incorrect. You should at least call System.gc() before taking the heap measurement, and even that would not be accurate. For example, in the results below, I get negative heap size using your method.
Warmup
Every benchmark requires a warm-up. For example, when I apply the TestEntity fix, as suggested above, and do the cache population and queries 2 times, I get better results.
MySQL Comparison
I don't think comparing a single-node Data Grid test to MySQL is fair, neither for Ignite, nor for Hazelcast. Databases have their own caching and whenever working with such small memory sizes, you are usually testing database in-memory cache vs. Data Grid in-memory cache.
The performance benefit usually comes in whenever doing a distributed test over a partitioned cache. This way a Data Grid will execute the query on each cluster node in parallel and the results should come back a lot faster.
Results
Here are the results I got for Apache Ignite. They look a lot better after I made the aforementioned fixes.
Note that the 2nd time we execute the cache population and cache queries, we get better results because the HotSpot JVM is warmed up.
It is worth mentioning that Ignite does not cache query results. Every time you run the query, you are executing it from scratch.
I will create another GitHub repo with the corrected code and post it here when I am more awake (coffee is not helping anymore).
Here is the benchmark source code: https://github.com/a-rog/px100data/tree/master/examples/HazelcastVsIgnite
It is part of the JDBC-ish NoSQL framework I mentioned earlier: Px100 Data
Building and running it:
As you can see, I set the memory limits high to avoid garbage collection. You can also run my own framework test (see Px100DataTest.java) and compare to the two above, but let's concentrate on pure performance. Neither test uses Spring or anything else except for Hazelcast 3.5.1 and Ignite 1.3.3 - the latest at the moment.
The benchmark transactionally inserts the specified number of appr. 1K-size records (100000 of them - you can increase it, but beware of memory) in batches (transactions) of 1000. Then it executes two queries with ascending and descending sort: four total. All query fields and ORDER BY are indexed.
I am not going to post the entire class (download it from GitHub). The Hazelcast query looks like this:
The matching Ignite query:
Here are the results executed on my 2012 8-core MBP with 8G of memory:
Hazelcast
Ignite
One obvious difference is the insert performance - noticeable in real life. However very rarely one inserts a 1000 records. Typically it is one insert or update (saving entered user's data, etc.), so it doesn't bother me. However the query performance does. Most data-centric business software is read-heavy.
Note the memory consumption. Ignite is much more RAM-hungry than Hazelcast. Which can explain better query performance. Well, if I decided to use an in-memory grid, should I worry about the memory?
You can clearly tell when data grids hit indexes and when they don't, how they cache compiled queries (the 7ms one), etc. I don't want to speculate and will let you play with it, as well, as Hazelcast and Ignite developers provide some insight.
As far, as general performance, it is comparable, if not below MySQL. IMO in-memory technology should do better. I am sure both companies will take notes.
The results above are pretty close. However when used within Px100 Data and the higher level Px100 (which heavily relies on indexed "sort fields" for pagination) Ignite pulls ahead and is better suited for my framework. I care primarily about the query performance.