Suppose one wants to build a novel generic class, Novel[A]
. This class will contain lots of useful methods--perhaps it is a type of collection--and therefore you want to subclass it. But you want the methods to return the type of the subclass, not the original type. In Scala 2.8, what is the minimal amount of work one has to do so that methods of that class will return the relevant subclass, not the original? For example,
class Novel[A] /* What goes here? */ {
/* Must you have stuff here? */
def reverse/* What goes here instead of :Novel[A]? */ = //...
def revrev/*?*/ = reverse.reverse
}
class ShortStory[A] extends Novel[A] /* What goes here? */ {
override def reverse: /*?*/ = //...
}
val ss = new ShortStory[String]
val ss2 = ss.revrev // Type had better be ShortStory[String], not Novel[String]
Does this minimal amount change if you want Novel
to be covariant?
(The 2.8 collections do this among other things, but they also play with return types in more fancy (and useful) ways--the question is how little framework one can get away with if one only wants this subtypes-always-return-subtypes feature.)
Edit: Assume in the code above that reverse
makes a copy. If one does in-place modification and then returns oneself, one can use this.type
, but that doesn't work because the copy is not this
.
Arjan linked to another question that suggests the following solution:
def reverse: this.type = {
/*creation of new object*/.asInstanceOf[this.type]
}
which basically lies to the type system in order to get what we want. But this isn't really a solution, because now that we've lied to the type system, the compiler can't help us make sure that we really do get a ShortStory
back when we think we do. (For example, we wouldn't have to override reverse
in the example above to make the compiler happy, but our types wouldn't be what we wanted.)
I haven't thought this through fully, but it type checks:
EDIT
The co-variant version can be much nicer:
After discussions on the Scala mailing list--many thanks to the people there for setting me on the right track!--I think that this is the closest that one can come to a minimal framework. I leave it here for reference, and I'm using a different example because it highlights what is going on better:
The key here is the addition of the
MyType
type parameter that is a placeholder for the type of the class that we'll really end up with. Each time we inherit, we have to redefine it as a type parameter, and we have add a constructor method that will create a new object of this type. If the constructor changes, we have to create a new constructor method.Now when you want to create a class to actually use, you only have to fill in the constructor method with a call to new (and tell the class that it's of its own type):
and you're off and running:
So, to review, the minimal boilerplate--if you want to include recursive methods, which breaks the other style of answer--is for any methods that return a new copy from outside the class (using new or a factory or whatever) to be left abstract (here, I've boiled everything down to one method that duplicates the constructor), and you have to add the
MyType
type annotation as shown. Then, at the final step, these new-copy methods have to be instantiated.This strategy works fine for covariance in
A
also, except that this particular example doesn't work sincef
andg
are not covariant.Edit: I just realized that Rex had a concrete class Novel in his example, not a trait as I've used below. The trait implementation is a bit too simple to be a solution to Rex's question, therefore. It can be done as well using a concrete class (see below), but the only way I could make that work is by some casting, which makes this not really 'compile time type-safe'. This So this does not qualify as a solution.
Perhaps not the prettiest, but a simple example using abstract member types could be implemented as follows:
It's certainly minimal, but I doubt whether this would enough to be used as a kind of framework. And of course the types returned not anywhere near as clear as in the Scala collections framework, so perhaps this might be a bit too simple.
For the given case, it seems to do the job, however.As remarked above, this does not do the job for the given case, so some other solution is required here.Yet Another Edit: Something similar can be done using a concrete class as well, though that also not suffices to be type safe:
And the code will work as in the trait example. But it suffers from the same problem as Rex mentioned in his edit as well. The override on ShortStory is not necessary to make this compile. However, it will fail at runtime if you don't do this and call the reverse method on a ShortStory instance.