add one row in a pandas.DataFrame

2018-12-31 09:01发布

I understand that pandas is designed to load fully populated DataFrame but I need to create an empty DataFrame then add rows, one by one. What is the best way to do this ?

I successfully created an empty DataFrame with :

res = DataFrame(columns=('lib', 'qty1', 'qty2'))

Then I can add a new row and fill a field with :

res = res.set_value(len(res), 'qty1', 10.0)

It works but seems very odd :-/ (it fails for adding string value)

How can I add a new row to my DataFrame (with different columns type) ?

标签: python pandas
18条回答
其实,你不懂
2楼-- · 2018-12-31 09:27

For the sake of Pythonic way, here add my answer:

res = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
res = res.append([{'qty1':10.0}], ignore_index=True)
print(res.head())

   lib  qty1  qty2
0  NaN  10.0   NaN
查看更多
与君花间醉酒
3楼-- · 2018-12-31 09:29

This will take care of adding an item to an empty DataFrame. The issue is that df.index.max() == nan for the first index:

df = pd.DataFrame(columns=['timeMS', 'accelX', 'accelY', 'accelZ', 'gyroX', 'gyroY', 'gyroZ'])

df.loc[0 if math.isnan(df.index.max()) else df.index.max() + 1] = [x for x in range(7)]
查看更多
残风、尘缘若梦
4楼-- · 2018-12-31 09:30

Another way to do it (probably not very performant):

# add a row
def add_row(df, row):
    colnames = list(df.columns)
    ncol = len(colnames)
    assert ncol == len(row), "Length of row must be the same as width of DataFrame: %s" % row
    return df.append(pd.DataFrame([row], columns=colnames))

You can also enhance the DataFrame class like this:

import pandas as pd
def add_row(self, row):
    self.loc[len(self.index)] = row
pd.DataFrame.add_row = add_row
查看更多
余欢
5楼-- · 2018-12-31 09:33

For efficient appending see How to add an extra row to a pandas dataframe and Setting With Enlargement.

Add rows through loc/ix on non existing key index data. e.g. :

In [1]: se = pd.Series([1,2,3])

In [2]: se
Out[2]: 
0    1
1    2
2    3
dtype: int64

In [3]: se[5] = 5.

In [4]: se
Out[4]: 
0    1.0
1    2.0
2    3.0
5    5.0
dtype: float64

Or:

In [1]: dfi = pd.DataFrame(np.arange(6).reshape(3,2),
   .....:                 columns=['A','B'])
   .....: 

In [2]: dfi
Out[2]: 
   A  B
0  0  1
1  2  3
2  4  5

In [3]: dfi.loc[:,'C'] = dfi.loc[:,'A']

In [4]: dfi
Out[4]: 
   A  B  C
0  0  1  0
1  2  3  2
2  4  5  4
In [5]: dfi.loc[3] = 5

In [6]: dfi
Out[6]: 
   A  B  C
0  0  1  0
1  2  3  2
2  4  5  4
3  5  5  5
查看更多
查无此人
6楼-- · 2018-12-31 09:33
mycolumns = ['A', 'B']
df = pd.DataFrame(columns=mycolumns)
rows = [[1,2],[3,4],[5,6]]
for row in rows:
    df.loc[len(df)] = row
查看更多
梦醉为红颜
7楼-- · 2018-12-31 09:34

Example at @Nasser's answer:

>>> import pandas as pd
>>> import numpy as np
>>> df = pd.DataFrame(columns=['lib', 'qty1', 'qty2'])
>>> for i in range(5):
>>>     df.loc[i] = [np.random.randint(-1,1) for n in range(3)]
>>>
>>> print(df)
    lib  qty1  qty2
0    0     0    -1
1   -1    -1     1
2    1    -1     1
3    0     0     0
4    1    -1    -1

[5 rows x 3 columns]
查看更多
登录 后发表回答