I'm trying to put together a model of a dynamical system in PyMC3, to infer two parameters. The model is the basic SIR, commonly used in epidemiology :
dS/dt = - r0 * g * S * I
dI/dt = g * I ( r * S - 1 )
where r0 and g are parameters to be inferred. So far, I'm unable to get very far at all. The only examples I've seen of putting together a Markov chain like this yields errors about recursion being too deep. Here's my example code.
# Time
t = np.linspace(0, 8, 200)
# Simulated observation
def SIR(y, t, r0, gamma) :
S = - r0 * gamma * y[0] * y[1]
I = r0 * gamma * y[0] * y[1] - gamma * y[1]
return [S, I]
# Currently no noise, we just want to infer params r0 = 16 and g = 0.5
solution = odeint(SIR, [0.99, 0.01, 0], t, args=(16., 0.5))
with pymc.Model() as model :
r0 = pymc.Normal("r0", 15, sd=10)
gamma = pymc.Uniform("gamma", 0.3, 1.)
# Use forward Euler to solve
dt = t[1] - t[0]
# Initial conditions
S = [0.99]
I = [0.01]
for i in range(1, len(t)) :
S.append(pymc.Normal("S%i" % i, \
mu = S[-1] + dt * (-r0 * gamma * S[-1] * I[-1]), \
sd = solution[:, 0].std()))
I.append(pymc.Normal("I%i" % i, \
mu = I[-1] + dt * ( r0 * gamma * S[-1] * I[-1] - gamma * I[-1]), \
sd = solution[:, 1].std()))
Imcmc = pymc.Normal("Imcmc", mu = I, sd = solution[:, 1].std(), observed = solution[:, 1])
#start = pymc.find_MAP()
trace = pymc.sample(2000, pymc.NUTS())
Any help would be much appreciated. Thanks !
I would try defining a new distribution. Something like the following. However, this is not quite working, and I'm not quite sure what I did wrong.