I am beginning to use torch 7 and I want to make my dataset for classification. I've already made pixel images and corresponding labels. However, I do not know how to feed those data to the torch. I read some codes from others and found out that they are using the dataset whose extension is '.t7' and I think it is a tensor type. Is it right? And I wonder how I can convert my pixel images(actually, I made them with Matlab by using MNIST dataset) into t7 extension compatible to the torch. There must be structure of dataset in the t7 format but I cannot find it (also for the labels too).
To sum up, I have pixel images and labels and want to convert those to t7 format compatible to the torch.
Thanks in advance!
The datasets '.t7' are tables of labeled Tensors. For example the following lua code :
Will return through itorch :
Which means the file contains a table of two ByteTensor one labeled "data" and the other one labeled "label".
To answer your question, you should first read your images (with torchx for example : https://github.com/nicholas-leonard/torchx/blob/master/README.md ) then put them in a table with your Tensor of label. The following code is just a draft to help you out. It considers the case where : there are two classes, all your images are in the same folder and are ordered through those classes.
It should be possible to make a less hideous code but this one details all the steps and works with torch 7 and Jupyter 5.0.0 .
Hope it helps.
Regards