I have only found something similar to what I want here:
Coloring networkx edges based on weight
However I can't seem to apply this to my problem. I have a graph with weighted edges, but the weights aren't unique (so there are like 15 edges with weight 1). I want to colour my edges based on the weight they have, the lower the weight the lighter the colour.
I tried to apply the method suggested in the above question, but from what I understand this requires the weights to be unique on each edge?
So far I've produced a list in ascending order of the different edge weights and wanted to use this to classify the possible edge colours. I'm trying to avoid drawing the edges by weight as I may need to draw a very large graph in the future with a huge range of weights on the edges.
If it's unclear let me know in comments and I'll give more specific info.
Thanks!
EDIT: def draw_graph(target): nlist = [target]+G.neighbors(target) H=nx.subgraph(G, nlist) n=H.number_of_edges() colours = range(n) labels,weights = colour_and_label_edges(H)
pos = nx.spring_layout(H)
nx.draw(H, pos, node_color='#A0CBE2',edge_color=colours, node_size=100, edge_cmap=plt.cm.Blues, width=0.5, with_labels=False)
nx.draw_networkx_edge_labels(H, pos, edge_labels=labels)
plt.savefig("Graphs/edge_colormap_%s.png" % target) # save as png
plt.show() # display
pass
def colour_and_label_edges(graph):
d={}
for (u,v) in graph.edges():
d[u,v]=graph[u][v]['weight']
temp=[]
for val in d.values():
if val not in temp:
temp.append(val)
weights = sorted(temp,key=int)
return d, weights
The above code is incomplete, but the idea is the function gives me a list of the weights, as so:
[1, 2, 3, 4, 5, 6, 9, 10, 16, 21, 47, 89, 124, 134, 224]
I then want to use this list to assign each weight a colour, the higher the weight the darker the colour. (I've used a very small subgraph for this example relative to the data set). Hope that clears it up a little :S
You can use the edge weights and a colormap to draw them. You might want t a different colormap from the one below.