How can I find (iterate over) ALL the cycles in a directed graph from/to a given node?
For example, I want something like this:
A->B->A
A->B->C->A
but not: B->C->B
How can I find (iterate over) ALL the cycles in a directed graph from/to a given node?
For example, I want something like this:
A->B->A
A->B->C->A
but not: B->C->B
There are two steps (algorithms) involved in finding all cycles in a DAG.
The first step is to use Tarjan's algorithm to find the set of strongly connected components.
The second step is to find cycles (paths) within the connected components. My suggestion is to use a modified version of Hierholzer's algorithm.
The idea is:
Here is the link to a Java implementation with a test case:
http://stones333.blogspot.com/2013/12/find-cycles-in-directed-graph-dag.html
In the case of undirected graph, a paper recently published (Optimal listing of cycles and st-paths in undirected graphs) offers an asymptotically optimal solution. You can read it here http://arxiv.org/abs/1205.2766 or here http://dl.acm.org/citation.cfm?id=2627951 I know it doesn't answer your question, but since the title of your question doesn't mention direction, it might still be useful for Google search
Javascript solution using disjoint set linked lists. Can be upgraded to disjoint set forests for faster run times.
If what you want is to find all elementary circuits in a graph you can use the EC algorithm, by JAMES C. TIERNAN, found on a paper since 1970.
The very original EC algorithm as I managed to implement it in php (hope there are no mistakes is shown below). It can find loops too if there are any. The circuits in this implementation (that tries to clone the original) are the non zero elements. Zero here stands for non-existence (null as we know it).
Apart from that below follows an other implementation that gives the algorithm more independece, this means the nodes can start from anywhere even from negative numbers, e.g -4,-3,-2,.. etc.
In both cases it is required that the nodes are sequential.
You might need to study the original paper, James C. Tiernan Elementary Circuit Algorithm
then this is the other implementation, more independent of the graph, without goto and without array values, instead it uses array keys, the path, the graph and circuits are stored as array keys (use array values if you like, just change the required lines). The example graph start from -4 to show its independence.
I have analized and documented the EC but unfortunately the documentation is in Greek.
The DFS-based variants with back edges will find cycles indeed, but in many cases it will NOT be minimal cycles. In general DFS gives you the flag that there is a cycle but it is not good enough to actually find cycles. For example, imagine 5 different cycles sharing two edges. There is no simple way to identify cycles using just DFS (including backtracking variants).
Johnson's algorithm is indeed gives all unique simple cycles and has good time and space complexity.
But if you want to just find MINIMAL cycles (meaning that there may be more then one cycle going through any vertex and we are interested in finding minimal ones) AND your graph is not very large, you can try to use the simple method below. It is VERY simple but rather slow compared to Johnson's.
So, one of the absolutely easiest way to find MINIMAL cycles is to use Floyd's algorithm to find minimal paths between all the vertices using adjacency matrix. This algorithm is nowhere near as optimal as Johnson's, but it is so simple and its inner loop is so tight that for smaller graphs (<=50-100 nodes) it absolutely makes sense to use it. Time complexity is O(n^3), space complexity O(n^2) if you use parent tracking and O(1) if you don't. First of all let's find the answer to the question if there is a cycle. The algorithm is dead-simple. Below is snippet in Scala.
Originally this algorithm operates on weighted-edge graph to find all shortest paths between all pairs of nodes (hence the weights argument). For it to work correctly you need to provide 1 if there is a directed edge between the nodes or NO_EDGE otherwise. After algorithm executes, you can check the main diagonal, if there are values less then NO_EDGE than this node participates in a cycle of length equal to the value. Every other node of the same cycle will have the same value (on the main diagonal).
To reconstruct the cycle itself we need to use slightly modified version of algorithm with parent tracking.
Parents matrix initially should contain source vertex index in an edge cell if there is an edge between the vertices and -1 otherwise. After function returns, for each edge you will have reference to the parent node in the shortest path tree. And then it's easy to recover actual cycles.
All in all we have the following program to find all minimal cycles
and a small main method just to test the result
and the output is
To clarify:
Strongly Connected Components will find all subgraphs that have at least one cycle in them, not all possible cycles in the graph. e.g. if you take all strongly connected components and collapse/group/merge each one of them into one node (i.e. a node per component), you'll get a tree with no cycles (a DAG actually). Each component (which is basically a subgraph with at least one cycle in it) can contain many more possible cycles internally, so SCC will NOT find all possible cycles, it will find all possible groups that have at least one cycle, and if you group them, then the graph will not have cycles.
to find all simple cycles in a graph, as others mentioned, Johnson's algorithm is a candidate.