How can I find (iterate over) ALL the cycles in a directed graph from/to a given node?
For example, I want something like this:
A->B->A
A->B->C->A
but not: B->C->B
How can I find (iterate over) ALL the cycles in a directed graph from/to a given node?
For example, I want something like this:
A->B->A
A->B->C->A
but not: B->C->B
Depth first search with backtracking should work here. Keep an array of boolean values to keep track of whether you visited a node before. If you run out of new nodes to go to (without hitting a node you have already been), then just backtrack and try a different branch.
The DFS is easy to implement if you have an adjacency list to represent the graph. For example adj[A] = {B,C} indicates that B and C are the children of A.
For example, pseudo-code below. "start" is the node you start from.
Call the above function with the start node:
Regarding your question about the Permutation Cycle, read more here: https://www.codechef.com/problems/PCYCLE
You can try this code (enter the size and the digits number):
First of all - you do not really want to try find literally all cycles because if there is 1 then there is an infinite number of those. For example A-B-A, A-B-A-B-A etc. Or it may be possible to join together 2 cycles into an 8-like cycle etc., etc... The meaningful approach is to look for all so called simple cycles - those that do not cross themselves except in the start/end point. Then if you wish you can generate combinations of simple cycles.
One of the baseline algorithms for finding all simple cycles in a directed graph is this: Do a depth-first traversal of all simple paths (those that do not cross themselves) in the graph. Every time when the current node has a successor on the stack a simple cycle is discovered. It consists of the elements on the stack starting with the identified successor and ending with the top of the stack. Depth first traversal of all simple paths is similar to depth first search but you do not mark/record visited nodes other than those currently on the stack as stop points.
The brute force algorithm above is terribly inefficient and in addition to that generates multiple copies of the cycles. It is however the starting point of multiple practical algorithms which apply various enhancements in order to improve performance and avoid cycle duplication. I was surprised to find out some time ago that these algorithms are not readily available in textbooks and on the web. So I did some research and implemented 4 such algorithms and 1 algorithm for cycles in undirected graphs in an open source Java library here : http://code.google.com/p/niographs/ .
BTW, since I mentioned undirected graphs : The algorithm for those is different. Build a spanning tree and then every edge which is not part of the tree forms a simple cycle together with some edges in the tree. The cycles found this way form a so called cycle base. All simple cycles can then be found by combining 2 or more distinct base cycles. For more details see e.g. this : http://dspace.mit.edu/bitstream/handle/1721.1/68106/FTL_R_1982_07.pdf .
http://www.me.utexas.edu/~bard/IP/Handouts/cycles.pdf
Start at node X and check for all child nodes (parent and child nodes are equivalent if undirected). Mark those child nodes as being children of X. From any such child node A, mark it's children of being children of A, X', where X' is marked as being 2 steps away.). If you later hit X and mark it as being a child of X'', that means X is in a 3 node cycle. Backtracking to it's parent is easy (as-is, the algorithm has no support for this so you'd find whichever parent has X').
Note: If graph is undirected or has any bidirectional edges, this algorithm gets more complicated, assuming you don't want to traverse the same edge twice for a cycle.
The simplest choice I found to solve this problem was using the python lib called
networkx
.It implements the Johnson's algorithm mentioned in the best answer of this question but it makes quite simple to execute.
In short you need the following:
Answer: [['a', 'b', 'd', 'e'], ['a', 'b', 'c']]