Recommendations for languages with native (so no FSM generation tools) support for state machine development and execution and passing of messages/signals. This is for telecoms, e.g implementation of FSMs of this level of complexity.
I have considered Erlang, but would love some feedback, suggestions, pointer to tutorials, alternatives, particularly Java based frameworks. Maybe Scala?
Open source only. I'm not looking for UML or regular expression related solutions.
As this is for the implementation of telecoms protocols the FSMs may be non-trivial. Many states, many transitions, signal based, input constraints/guards. Dynamic instantiation would be a plus. Switch statements are out of the question, it quickly nests to unusable. It's barely better that if/else.
I would prefer to not depend on graphical design; the format FSM description should be human readable/editable/manageable.
--
I have decided to focus on an Actor based solution for C++
For example, the Theron framework provides a starting point http://theron.ashtonmason.net/ and to avoid switch statements in the FSM based event handler this C++ FSM Template Framework looks useful http://satsky.spb.ru/articles/fsm/fsmEng.php
I can hardly think of any language where implementing an FSM is non-trivial. Maybe this one.
The State pattern (using Java enums) is what we use in our telecom application, however we use small FSM's:
FSM should be trivial to implement in any language that has a case statement.Your choice of language should be based on what that finite state machine needs to do.
For example, you state that you need to do this for telecom development and mention messages. I would look at systems/languages that support distributed message passing. Erlang does this, and I"m sure just about every other common language supports this through an API/library for the language.
I disagree that FSM are trivial to implement. This is very short-sighted, and shows either a lack of familiarity with the alternatives, or the lack of experience with complex state machines.
The fundamental problem is that a state machine graph is obvious, but FSM code is not. Once you get beyond a dozen states and a score of transitions, FSM code becomes ugly and difficult to follow.
There are tools whereby you draw the state machine, and generate Java code for it. I don't know of any open source tools for that, however.
Now, getting back to Erlang/Scala, Scala has Actors and message passing as well, and is based on the JVM, so it might be a better alternative than Erlang given your constraints.
There's a DFA/NFA library on Scala as well, though it is not particularly a good one. It supports conversion from arbitrary regular expressions (ie, the literals need not be characters) into DFA/NFA.
I'll post some code below using it. In this code, the idea is creating a FSM which will accept any sequential combination of arbitrary prefixes for a list of words, the idea being looking up menu options without predefined keybinds.
This particular application, telco protocol implementation, is what Erlang was built for. The initial applications of Erlang at Ericsson were telephone switches and the earliest commercial products were ATM switches supporting all manner of telco protocols.
OTP has a standard behaviour for implementing FSMs called
gen_fsm
. There's an example of its use in a non-trivial FSM in some of the OTP Documentation.OSERL is an open souce SMPP implementation in Erlang and demonstrates how you can implement a telco protocol using
gen_fsm
s. A good example to look at would be gen_esme_session.While I can't point you to the code, I know there are quite a few Erlang companies selling telco oriented products: Corelatus, Synapse, Motivity among others.
I agree that switch statements should be out of the question... they eventually lead to maintenance nightmares. Can't you use the State Pattern to implement your FSM? Depending on your actual implementation, you could use actors (if you have multiple FSM collaborating - hm... is that possible?). The nice thing about actors is that the framework for passing messages is already there.
An example of using State would be:
This is very basic code, but as I don't know more of the requirements, that's the most I can think of. The advantage of State is that every state is self-contained in one class.