I keep seeing these warnings when using trainImplicit
:
WARN TaskSetManager: Stage 246 contains a task of very large size (208 KB).
The maximum recommended task size is 100 KB.
And then the task size starts to increase. I tried to call repartition
on the input RDD but the warnings are the same.
All these warnings come from ALS iterations, from flatMap and also from aggregate, for instance the origin of the stage where the flatMap is showing these warnings (w/ Spark 1.3.0, but they are also shown in Spark 1.3.1):
org.apache.spark.rdd.RDD.flatMap(RDD.scala:296)
org.apache.spark.ml.recommendation.ALS$.org$apache$spark$ml$recommendation$ALS$$computeFactors(ALS.scala:1065)
org.apache.spark.ml.recommendation.ALS$$anonfun$train$3.apply(ALS.scala:530)
org.apache.spark.ml.recommendation.ALS$$anonfun$train$3.apply(ALS.scala:527)
scala.collection.immutable.Range.foreach(Range.scala:141)
org.apache.spark.ml.recommendation.ALS$.train(ALS.scala:527)
org.apache.spark.mllib.recommendation.ALS.run(ALS.scala:203)
and from aggregate:
org.apache.spark.rdd.RDD.aggregate(RDD.scala:968)
org.apache.spark.ml.recommendation.ALS$.computeYtY(ALS.scala:1112)
org.apache.spark.ml.recommendation.ALS$.org$apache$spark$ml$recommendation$ALS$$computeFactors(ALS.scala:1064)
org.apache.spark.ml.recommendation.ALS$$anonfun$train$3.apply(ALS.scala:538)
org.apache.spark.ml.recommendation.ALS$$anonfun$train$3.apply(ALS.scala:527)
scala.collection.immutable.Range.foreach(Range.scala:141)
org.apache.spark.ml.recommendation.ALS$.train(ALS.scala:527)
org.apache.spark.mllib.recommendation.ALS.run(ALS.scala:203)
Similar problem was described in Apache Spark mail lists - http://apache-spark-user-list.1001560.n3.nabble.com/Large-Task-Size-td9539.html
I think you can try to play with number of partitions (using repartition() method), depending of how many hosts, RAM, CPUs do you have.
Try also to investigate all steps via Web UI, where you can see number of stages, memory usage on each stage, and data locality.
Or just never mind about this warnings unless everything works correctly and fast.
This notification is hard-coded in Spark (scheduler/TaskSetManager.scala)
.