To get orientation as a from of euler angles (e.g., pitch, roll, azimuth) in Android, it is required to execute followings:
- SensorManager.getRotationMatrix(float[] R, float[] I, float[] gravity, float[] geomagnetic);
- SensorManager.getOrientation(float[] R, float[] orientation);
In the first one, I realize that it uses a kind of TRIAD algorithms; Rotation matrix (R[]) is composed of gravity, geomagnetic X gravity, gravity X (geomagnetic X gravity) --- X is cross product.
See codes below:
float Ax = gravity[0];
float Ay = gravity[1];
float Az = gravity[2];
final float Ex = geomagnetic[0];
final float Ey = geomagnetic[1];
final float Ez = geomagnetic[2];
float Hx = Ey*Az - Ez*Ay;
float Hy = Ez*Ax - Ex*Az;
float Hz = Ex*Ay - Ey*Ax;
final float normH = (float)Math.sqrt(Hx*Hx + Hy*Hy + Hz*Hz);
if (normH < 0.1f) {
// device is close to free fall (or in space?), or close to
// magnetic north pole. Typical values are > 100.
return false;
}
final float invH = 1.0f / normH;
Hx *= invH;
Hy *= invH;
Hz *= invH;
final float invA = 1.0f / (float)Math.sqrt(Ax*Ax + Ay*Ay + Az*Az);
Ax *= invA;
Ay *= invA;
Az *= invA;
final float Mx = Ay*Hz - Az*Hy;
final float My = Az*Hx - Ax*Hz;
final float Mz = Ax*Hy - Ay*Hx;
if (R != null) {
if (R.length == 9) {
R[0] = Hx; R[1] = Hy; R[2] = Hz;
R[3] = Mx; R[4] = My; R[5] = Mz;
R[6] = Ax; R[7] = Ay; R[8] = Az;
} else if (R.length == 16) {
R[0] = Hx; R[1] = Hy; R[2] = Hz; R[3] = 0;
R[4] = Mx; R[5] = My; R[6] = Mz; R[7] = 0;
R[8] = Ax; R[9] = Ay; R[10] = Az; R[11] = 0;
R[12] = 0; R[13] = 0; R[14] = 0; R[15] = 1;
}
}
However, I cannot understand SensorManager.getOrientation().
azimuth = (float)Math.atan2(R[1], R[4]);
pitch = (float)Math.asin(-R[7]);
roll = (float)Math.atan2(-R[6], R[8]);
What is the exact algorithms to get euler angles?
I am going to give a geometric interpretation of
getOrientation
and explain how you can calculate all kind of rotations using onlyRotationMatrix
. If you understand whatgetOrientation
does then there is no need to use it and if you don't then using it can give you all kind of troubles.Specifically, it will give answer to many questions concerning orientation posted at Stack Exchange such as
getRotation
one needs to add 90 degree to get the correct answer.RemapCoordinateSystem
has to be called before callinggetOrientation
to obtain the direction of the back camera (negative of the device z-axis).RemapCoordinateSystem
and thengetOrientation
to correctly obtain the direction of the device z-axis, when the device is flat the result does not make sense anymore.First I need to explain
RotationMatrix
in more detail and what can it does before explaininggetOrientation
There is 2 coordinates systems to be considered here.
One is the World coordinates system with the x-axis pointing East, y-axis pointing North and the z-axis pointing to the sky.
The other is the device coordinates system with the x-axis the shorter side on a phone (longer side on a tablet), y-axis the longer side on a phone (shorter side on a tablet) and z-axis is the vector orthogonal to the screen pointing out at you.
Mathematically speaking our object is the 3 dimensional real vector space and we are using the following bases for this vector space.
World basis
W = {E, N, SKY}
whereE
is a unit vector lying in the East directionN
is a unit vector lying in the North directionSKY
is a unit vector lying in the Sky directionDevice basis
D = {X, Y, Z}
whereX
is a unit vector lying in the phone short side direction (long side for tablet)Y
is a unit vector lying in the phone long side direction (short side for tablet)Z
is a unit vector lying in the direction orthogonal to the screen pointing out at youFor those who forgot what a basis is, it means every vector v in 3 space can be written as
In World basis
v = a_1 E + a_2 N + a_3 SKY where a_1, a_2, a_3 are real number
And usually written as (a_1, a_2, a_3)_W or just (a_1, a_2, a_3). This 3 tuples is called the coordinate of v with respect to World basis or just coordinate of v with the basis implicit understood to be the World basis
In Device basis
v = b_1 X + b_2 Y + b_3 Z where b_1, b_2, b_3 are real number
And usually written as (b_1, b_2, b_3)_W or just (b_1, b_2, b_3). This 3 tuples is called the coordinate of v with respect to Device basis or just coordinate of v with the basis implicitly understood to be the Device basis. Values returned by sensors are in Device basis, for example accelerometer returned as values[0], values[1] and values[2] written in Device basis would be
acc = values[0] X + values[1] Y + values[2] Z
In particular
X = 1 X + 0 Y + 0 Z
Y = 0 X + 1 Y + 0 Z
Z = 0 X + 0 Y + 1 Z
that is the coordinate of X, Y and Z with respect to the device basis is (1, 0, 0), (0, 1, 0) and (0, 0, 1) respectively. You will see how these vectors will be used to explain the calculation in
getOrientation
later.Notice that the World basis is fixed, but the Device basis changes as the position of the phone changes. That is the unit vectors X, Y, Z change as the device position changes. They are defined in a same way but they are different vectors when position changes. You still write them as X, Y, Z but they are different X, Y, Z.
Thus if a phone stands still the only force acting on the phone is gravity and hence the accelerometer vector theoretically is a vector lying on the World Sky axis, that is in World basis the coordinate is (0, 0, g). In device basis it is (a_1, a_2, a_3) for some a_1, a_2 and a_3. If the device stands still at a different orientation the accelerometer is still the same that is (0, 0, g) in World basis but now it is (b_1, b_2, b_3) in Device basis where at least one the a's is different from the b's.
Among the parameters for
getRotationMatrix
are thegravity
andgeomagnetic
.gravity
is assumed to be realgravity
that is it coordinate is (0, 0, k) in World basis and geomagnetic is assume to lies on the World N-Sky plane that is it coordinate is (0, a, b) in World basis.With these assumption let see how the
Rotation Matrix
is calculated ingetRotationMatrix
. What it tries in this method is to obtain a matrix M such that given any vector with coordinate (a_1, a_2, a_3) in Device basis the product M (a_1, a_2, a_3)_T (transpose) gives the coordinate (b_1, b_2, b_3) in World basis. Mathematically speaking thegetRotationMatrix
calculate the change of basis matrix.The passed in parameters for
gravity
g should be the values obtained fromonSensorChanged
forTYPE_GRAVITY
or low pass filter ofTYPE_ACCELEROMETER
and forgeomagnetic
m should be the values fromTYPE_MAGNETIC_FIELD
g = a_1 X + a_2 Y + a_3 Z
m = b_1 X + b_2 Y + b_3 Z
Without loss of generality assume g and m are already normalize, that is the norm of g and m are equal to 1. What we want to do now is to write the World basis
{E, N, SKY}
in Device basis.Since g is assume to be gravity, that is (0, 0, 1) in World basis this is exactly the vector SKY.
SKY = g = a_1 X + a_2 Y + a_3 Z
That is the coordinate of SKY in Device basis is (a_1, a_2, a_3)
Now since m is assumed to lies in the World N-SKY plane the cross product of m and g is a unit vector orthogonal to the World N-SKY plane and point to the right and thus this is E.
E = m x g = b_1 X + b_2 Y + b_3 Z
That is the coordinate of E with respect to the Device basis is (b_1, b_2, b_3) the b's are the values resulting from the cross product of m and g
Finally the cross product of SKY and E is a vector orthogonal to the E-SKY plane and is N
N = SKY x E = c_1 X + c_2 Y + c_3 Z
Putting together we have
E = b_1 X + b_2 Y + b_3 Z
N = c_1 X + c_2 Y + c_3 Z
SKY = a_1 X + a_2 Y + a_3 Z
Thus given any coordinate in World basis we can find the coordinate in Device basis. For example (1, 2, 3) that is a vector v
v = E + 2 N + 3 SKY
written in Device coordinate would be by substituting and multiply out
v = b_1 X + b_2 Y + b_3 Z + 2 (c_1 X + c_2 Y + c_3 Z) + 3 (a_1 X + a_2 Y + a_3 Z)
v = (b_1 + 2 c_1 + 3 a_1) X + (b_2 + 2 c_2 + 3 a_2) Y + (b_3 + 2 c_3 + 3 a_3) Z
But we are really interested in the reverse which is given any coordinate in Device basis find the coordinate in the World basis. Well for those who do not remember linear algebra, in the above we have a 3 equations in 3 unknown thus we should be able to solve this equation for X, Y and Z in term of E, N and SKY.
Mathematically speaking the matrix obtain by putting the a,b and c above in colunms is the change of basis matrix from the World basis to the Device basis and thus we need to find the inverse of it. But this matrix is an orthonormal matrix and thus its inverse is just its transpose.
Written in code
given any coordinate (a_1, a_2, a_3) in the Device basis we can find the coordinate (b_1, b_2, b_3) in the World coordinate by taking the product of the matrix above and the transpose of (a_1, a_2, a_3).
In particular
Thus the coordinates of X in World basis is (a[0], a[3], a[6])
Thus the coordinates of Y in World basis is (a[1], a[4], a[7])
Thus the coordinates of Z in World basis is (a[2], a[5], a[8])
Now let see what
getOrientation
does.The code for it is
And the document say
Take the above document literally without considering the position of the device is wrong. The document is true for the
azimuth
only if the device is flat.Before we continue let me note that all calculations have to be done with coordinates relative to the same basis. For example if you want find the angle between 2 vectors, the coordinates of these 2 vectors had to be with respect to the same basis.
Now when you calculate rotation, you kind of implicitly understand that the rotation is a deviation from a fixed position. That is if the answer is 90 degrees then it is 90 degree from what? In the case of the
azimuth
it is 90 degree from the magnetic north, that is you calculate the deviation from the N vector. If you cannot spell out this implicit fixed position, you are in for a lot of troubles. For example what is the fixed vector for the pitch? roll? device orientation (portrait-landscape)?Let take a look at each calculation and see what it really calculates.
For the
azimuth
the official calculation isLet go back to the way Y is written in Device coordinate. As mention earlier the coordinate of Y is (0, 1, 0) in the Device basis and the coordinate of Y in the World basis is (a[1], a[4], a[7])
The coordinate in World basis of the projection of Y into the World XY plane is (a[1], a[4]). The angle between this projection vector and the N vector is (draw the picture of the projection vector and
N
if you do not get it)which is precisely the calculation for the
azimuth
.Thus
getOrientation
calculate the angle between the projection of the device y-axis into the World XY-plane and the World north axis. Hence if the device is held vertically, this calculation does not make sense since the y-coordinate of the projection is always 0. Geometrically it does not make sense to calculate the direction due north if you are pointing at the sky. Also, in this case rotation around the -Z axis would mean rotation away from Portrait so the document is not correct.For Pitch the official calculation is
The coordinate in the World basis of the projection of the Y vector into the World N-SKY plane is (a[4], a[7]) and the angle between this projection vector and the projection of Y vector into the world E-N plane which is the same as the angle between the projection of the Z vector into the Y-Z plane and the gravity vector is (again draw picture for yourself)
Thus the pitch is the angle between the projection of the device y-axis into the World N-SKY plane and the projection of Y into the world E-N plane
Similarly the
Roll
is the angle between the projection of the device x-axis into the World X-SKY plane and the projection of X into the world E-N plane.For example I pointed out earlier.
getRotation
one needs to add 90 degree to get the correct answer.In this case one wants to calculate the angle between the projection of the x-axis into the World XY plane and thus one need to add 90 degrees as the angle between the x and y axes is always 90 degrees. One can instead get the coordinate in World basis of the
X
vector which is (a[0], a[3], a[6]) and then project into the World XY plane to get (a[0], a[3]) and do the calculation which is Math.atan2(R[0], R[3]).RemapCoordinateSystem
has to be called before callinggetOrientation
to obtain the direction of the back camera (negative of the device z-axis).In this case you want to calculate the direction of the z axis and not the y axis which the
getOrientation
calculates. Thus you have to callremapCoordinateSystem
which maps the Z axis into the Y axis. Geometrically, what you do is to rotate the z-axis to the y-axix and now y-axis becomes -z-axis. Thus you need to negate the y-column in the Rotation Matrix to get back to the original define coordinates system. You can just get the coordinate of in World basis of the -Z which is (-a[2], -a[5], -a[8]) and then project into the World XY plane to get (-a[2], -a[5]) and do the calculation.Note: I first work with the Sensor's classes in 2011 which after knowing what the
getRotationMatrix
andgetOrientation
do, I created a library to do the calculation using only Rotation Matrix. I did not thinkremapCoordinateSystem
andgetOrientation
are needed, but I did not realize they are bad to use until I write this answer, since it will give the correctazymuth
but then give the wrong value forpitch
. WhatremapCoordinateSystem
does is to make the calculation of theazymuth
ingetOrientation
correct according to the direction you want to calculate. But then thepitch
value is incorrect you have to add -90 degrees to it to get the right value for the case of back camera direction and whatever it maybe for other cases.If I were to write this class I would create
Then there will be no confusion and all the answers would be correct.
RemapCoordinateSystem
and thengetOrientation
to correctly obtain the direction of the device z-axis, when the device is flat the result does not make sense anymore.You are trying to calculate the direction of the -z axis due north and now it is pointing to the sky so the calculation does not make sense anymore.
Tomorrow I will post an answer for the case of rotation about the z axis at Get Euler Yaw angle of an Android Device.
Note: If you just want to write a compass app and the device is always flat then TYPE_ORIENTATION is still good.
Note 2: I am terrible at drawing and thus cannot post any picture to illustrate. I can not even draw a straight line using Gimp (I followed instruction to hold down the shift key but my line was ragged). If someone is good at drawing and willing to help just drop a comment and I will give instruction of what the picture illustrations I had in mind and where to put them.
Let me try to explain: getRotationMatrix compose rotation matrix on the basis of gravity and megnetic vector.
Our main goal here is to construct NED frame
We assume that gravity points toward the center of the Earth and magnet to the north Pole. But in real cases these vectors are non-perpendicular, that's why we firstly calculate vector H that is orthogonal to E and A and belong to tangential plane. H is a cross-product (E x A) and is orthogonal to E and A.
normalize acceleration and H vector (because these vectors will compose a basis of ENU coordinate system)
Find last basis vector (M) as cross-product of H and A:
Coordinates of the arbitrary vector (a) in body frame expresses through NED coordinates as a = Ra' R - Transformation matrix matrix, whose columns are the coordinates of the new basis vectors in the old basis
But coordinates in NED frame are calculated as a' = T^(-1) * a. For orthogonal transformation matrix inverse is equal to transposed matrix. Thus we have:
Once we have rotation matrix we can convert it to Euler angles representation. Formulas of convertion depend from convention that you use. Your formulas
are correct for Tiat Bryan angles with convention Y-X-Z. In order to better understand conversion from rotation matrix to Euler angles I would suggest to study an article of Gregory G. Slabaugh - "Computing Euler angles from a rotation matrix"