I am pre-allocating some memory to my a vector
member variable. Below code is minimal part
class A {
vector<string> t_Names;
public:
A () : t_Names(1000) {}
};
Now at some point of time, if the t_Names.size()
equals 1000
. I am intending to increase the size by 100
. Then if it reaches 1100
, again increase by 100
and so on.
My question is, what to choose between vector::resize()
and vector::reserve()
. Is there any better choice in this kind of scenario ?
Edit: I have sort of precise estimate for the t_Names
. I estimate it to be around 700
to 800
. However in certain (seldom) situations, it can grow more than 1000
.
resize()
not only allocates memory, it also creates as many instances as the desired size which you pass toresize()
as argument. Butreserve()
only allocates memory, it doesn't create instances. That is,Output (online demo):
So
resize()
may not be desirable, if you don't want the default-created objects. It will be slow as well. Besides, if youpush_back()
new elements to it, thesize()
of the vector will further increase by allocating new memory (which also means moving the existing elements to the newly allocated memory space). If you have usedreserve()
at the start to ensure there is already enough allocated memory, thesize()
of the vector will increase when youpush_back()
to it, but it will not allocate new memory again until it runs out of the space you reserved for it.reserve when you do not want the objects to be initialized when reserved. also, you may prefer to logically differentiate and track its count versus its use count when you resize. so there is a behavioral difference in the interface - the vector will represent the same number of elements when reserved, and will be 100 elements larger when resized in your scenario.
it depends entirely on your aims when fighting the default behavior. some people will favor customized allocators -- but we really need a better idea of what it is you are attempting to solve in your program to advise you well.
fwiw, many vector implementations will simply double the allocated element count when they must grow - are you trying to minimize peak allocation sizes or are you trying to reserve enough space for some lock free program or something else?
From your description, it looks like that you want to "reserve" the allocated storage space of vector t_Names.
Take note that
resize
initialize the newly allocated vector wherereserve
just allocates but does not construct. Hence, 'reserve' is much faster than 'resize'You can refer to the documentation regarding the difference of resize and reserve
The two functions do vastly different things!
The
resize()
method (and passing argument to constructor is equivalent to that) will insert or delete appropriate number of elements to the vector to make it given size (it has optional second argument to specify their value). It will affect thesize()
, iteration will go over all those elements, push_back will insert after them and you can directly access them using theoperator[]
.The
reserve()
method only allocates memory, but leaves it uninitialized. It only affectscapacity()
, butsize()
will be unchanged. There is no value for the objects, because nothing is added to the vector. If you then insert the elements, no reallocation will happen, because it was done in advance, but that's the only effect.So it depends on what you want. If you want an array of 1000 default items, use
resize()
. If you want an array to which you expect to insert 1000 items and want to avoid a couple of allocations, usereserve()
.EDIT: Blastfurnace's comment made me read the question again and realize, that in your case the correct answer is don't preallocate manually. Just keep inserting the elements at the end as you need. The vector will automatically reallocate as needed and will do it more efficiently than the manual way mentioned. The only case where
reserve()
makes sense is when you have reasonably precise estimate of the total size you'll need easily available in advance.EDIT2: Ad question edit: If you have initial estimate, then
reserve()
that estimate. If it turns out to be not enough, just let the vector do it's thing.