When I run a cluster standard error panel specification with plm
and lfe
I get results that differ at the second significant figure. Does anyone know why they differ in their calculation of the SE's?
set.seed(572015)
library(lfe)
library(plm)
library(lmtest)
# clustering example
x <- c(sapply(sample(1:20), rep, times = 1000)) + rnorm(20*1000, sd = 1)
y <- 5 + 10*x + rnorm(20*1000, sd = 10) + c(sapply(rnorm(20, sd = 10), rep, times = 1000))
facX <- factor(sapply(1:20, rep, times = 1000))
mydata <- data.frame(y=y,x=x,facX=facX, state=rep(1:1000, 20))
model <- plm(y ~ x, data = mydata, index = c("facX", "state"), effect = "individual", model = "within")
plmTest <- coeftest(model,vcov=vcovHC(model,type = "HC1", cluster="group"))
lfeTest <- summary(felm(y ~ x | facX | 0 | facX))
data.frame(lfeClusterSE=lfeTest$coefficients[2],
plmClusterSE=plmTest[2])
lfeClusterSE plmClusterSE
1 0.06746538 0.06572588
The difference is in the degrees-of-freedom adjustment. This is the usual first guess when looking for differences in supposedly similar standard errors (see e.g., Different Robust Standard Errors of Logit Regression in Stata and R). Here, the problem can be illustrated when comparing the results from (1)
plm
+vcovHC
, (2)felm
, (3)lm
+cluster.vcov
(from packagemultiwayvcov
).First, I refit all models:
All lead to the same coefficient estimates. For
m3
the fixed effects are explicitly reported while they are not form1
andm2
. Hence, form3
only the last coefficient is extracted withtail(..., 1)
.The non-robust standard errors also agree.
And when comparing the clustered standard errors we can now show that
felm
uses the degrees-of-freedom correction whileplm
does not: