I seldom use inheritance, but when I do, I never use protected attributes because I think it breaks the encapsulation of the inherited classes.
Do you use protected attributes ? what do you use them for ?
I seldom use inheritance, but when I do, I never use protected attributes because I think it breaks the encapsulation of the inherited classes.
Do you use protected attributes ? what do you use them for ?
The
protected
keyword is a conceptual error and language design botch, and several modern languages, such as Nim and Ceylon (see http://ceylon-lang.org/documentation/faq/language-design/#no_protected_modifier), that have been carefully designed rather than just copying common mistakes, don't have such a keyword.It's not protected members that breaks encapsulation, it's exposing members that shouldn't be exposed that breaks encapsulation ... it doesn't matter whether they are protected or public. The problem with
protected
is that it is wrongheaded and misleading ... declaring membersprotected
(rather thanprivate
) doesn't protect them, it does the opposite, exactly aspublic
does. A protected member, being accessible outside the class, is exposed to the world and so its semantics must be maintained forever, just as is the case forpublic
. The whole idea of "protected" is nonsense ... encapsulation is not security, and the keyword just furthers the confusion between the two. You can help a little by avoiding all uses ofprotected
in your own classes -- if something is an internal part of the implementation, isn't part of the class's semantics, and may change in the future, then make it private or internal to your package, module, assembly, etc. If it is an unchangeable part of the class semantics, then make it public, and then you won't annoy users of your class who can see that there's a useful member in the documentation but can't use it, unless they are creating their own instances and can get at it by subclassing.I recently worked on a project were the "protected" member was a very good idea. The class hiearchy was something like:
The Base implemented a std::list but nothing else. The direct access to the list was forbidden to the user, but as the Base class was incomplete, it relied anyway on derived classes to implement the indirection to the list.
The indirection could come from at least two flavors: std::map and stdext::hash_map. Both maps will behave the same way but for the fact the hash_map needs the Key to be hashable (in VC2003, castable to size_t).
So BaseMap implemented a TMap as a templated type that was a map-like container.
Map and HashMap were two derived classes of BaseMap, one specializing BaseMap on std::map, and the other on stdext::hash_map.
So:
Base was not usable as such (no public accessors !) and only provided common features and code
BaseMap needed easy read/write to a std::list
Map and HashMap needed easy read/write access to the TMap defined in BaseMap.
For me, the only solution was to use protected for the std::list and the TMap member variables. There was no way I would put those "private" because I would anyway expose all or almost all of their features through read/write accessors anyway.
In the end, I guess that if you en up dividing your class into multiple objects, each derivation adding needed features to its mother class, and only the most derived class being really usable, then protected is the way to go. The fact the "protected member" was a class, and so, was almost impossible to "break", helped.
But otherwise, protected should be avoided as much as possible (i.e.: Use private by default, and public when you must expose the method).
You may need them for static (or 'global') attribute you want your subclasses or classes from same package (if it is about java) to benefit from.
Those static final attributes representing some kind of 'constant value' have seldom a getter function, so a protected static final attribute might make sense in that case.
I don't use protected attributes in Java because they are only package protected there. But in C++, I'll use them in abstract classes, allowing the inheriting class to inherit them directly.
In general, yes. A protected method is usually better.
In use, there is a level of simplicity given by using a protected final variable for an object that is shared by all the children of a class. I'd always advise against using it with primitives or collections since the contracts are impossible to define for those types.
Lately I've come to separate stuff you do with primitives and raw collections from stuff you do with well-formed classes. Primitives and collections should ALWAYS be private.
Also, I've started occasionally exposing public member variables when they are declaired final and are well-formed classes that are not too flexible (again, not primitives or collections).
This isn't some stupid shortcut, I thought it out pretty seriously and decided there is absolutely no difference between a public final variable exposing an object and a getter.
In general, no you really don't want to use protected data members. This is doubly true if your writing an API. Once someone inherits from your class you can never really do maintenance and not somehow break them in a weird and sometimes wild way.