I am just wondering whether anyone has some R code that uses the package R2WinBUGS to run logistic regression - ideally with simulated data to generate the 'truth' and two continous co-variates.
Thanks.
Christian
PS:
Potential code to generate artificial data (one dimensional case) and run winbugs via r2winbugs (it does not work yet).
library(MASS)
library(R2WinBUGS)
setwd("d:/BayesianLogisticRegression")
n.site <- 150
X1<- sort(runif(n = n.site, min = -1, max =1))
xb <- 0.0 + 3.0*X1
occ.prob <- 1/(1+exp(-xb))
plot(X1, occ.prob,xlab="X1",ylab="occ.prob")
true.presence <- rbinom(n = n.site, size = 1, prob = occ.prob)
plot(X1, true.presence,xlab="X1",ylab="true.presence")
# combine data as data frame and save
data <- data.frame(X1, true.presence)
write.matrix(data, file = "data.txt", sep = "\t")
sink("model.txt")
cat("
model {
# Priors
alpha ~ dnorm(0,0.01)
beta ~ dnorm(0,0.01)
# Likelihood
for (i in 1:n) {
C[i] ~ dbin(p[i], N) # Note p before N
logit(p[i]) <- alpha + beta *X1[i]
}
}
",fill=TRUE)
sink()
# Bundle data
win.data <- list(mass = X1, n = length(X1))
# Inits function
inits <- function(){ list(alpha=rlnorm(1), beta=rlnorm(1))}
# Parameters to estimate
params <- c("alpha", "beta")
# MCMC settings
nc <- 3 #Number of Chains
ni <- 1200 #Number of draws from posterior
nb <- 200 #Number of draws to discard as burn-in
nt <- 2 Thinning rate
# Start Gibbs sampling
out <- bugs(data=win.data, inits=inits, parameters.to.save=params,
model.file="model.txt", n.thin=nt, n.chains=nc, n.burnin=nb,
n.iter=ni, debug = TRUE)
Your script is exactly the way to do it. It is almost working, it just required one simple change to make it work:
Which defines which data go to WinBugs. The variable C must be filled with true.presence, N must be 1 according to the data you generated - note that this is a special case of binomial distribution for N = 1, which is called Bernoulli - a simple "coin flip".
Here is the output:
as you see, the parameters correspond to the parameters used to generate the data. Also, if you compare with the frequentist solution, you see it corresponds.
EDIT: but the typical logistic (~ binomial) regression would measure some counts with some upper value N[i], and it would allow for different N[i] for each observation. For example say the proportion of juveniles to the whole population (N). This would require just to add index to N in your model:
The data generation would look something like:
(end of edit)
For more examples from population ecology see books of Marc Kéry (Introduction to WinBUGS for ecologist, and especially Bayesian Population Analysis using WinBUGS: A hierarchical perspective, which is a great book).
The complete script I used - the corrected script of yours is listed here (comparison with frequentist solution at the end):