I have created a bar graph in ggplot2 where 3 bars represent the probability of making 1 of 3 choices.
I want to add a bolded border around the bar that shows the correct response.
I haven't found a way to do this. I can change the colour of ALL the bars but not just the one.
The image attached shows the grid of graphs I have generated. In the leftCust column I want all bars with 'left' below them to have a bold border.
In the rightCust column I want to add the bold border to all bars with right below them.
And finally in the SIMCust column I want all bars with SIM below them to have a bold border.
This is basically to highlight the correct response and make it easier to explain what the graphs are showing.
CODE:
dataRarrangeExpD <- read.csv("EXP2D.csv", header =TRUE);
library(ggplot2)
library("matrixStats")
library("lattice")
library("gdata")
library(plyr)
library(doBy)
library(Epi)
library(reshape2)
library(graphics)
#Create DataFrame with only Left-to-Right Visual Presentation
DataRearrangeD <- dataRarrangeExpD[, c("correct","Circle1", "Beep1","correct_response", "response", "subject_nr")]
#data_exp1$target_coh > 0
# Add new columns to hold choices made
DataRearrangeD[c("RightChoice", "LeftChoice", "SimChoice")] <- 0
DataRearrangeD$RightChoice <- ifelse(DataRearrangeD$response == "l", 1, 0)
DataRearrangeD$LeftChoice <- ifelse(DataRearrangeD$response == "a", 1, 0)
DataRearrangeD$SimChoice <- ifelse(DataRearrangeD$response == "space", 1, 0)
Exp2D.data = DataRearrangeD
# Construct data frames of report probability
SIM.vis.aud.df = aggregate(SimChoice ~ Circle1 + Beep1 + subject_nr, data = Exp2D.data, mean)
RightFirst.vis.aud.df = aggregate(RightChoice ~ Circle1 + Beep1 + subject_nr, data = Exp2D.data, mean)
LeftFirst.vis.aud.df = aggregate(LeftChoice ~ Circle1 + Beep1 + subject_nr, data = Exp2D.data, mean)
# combine data frames
mean.vis.aud.df = data.frame(SIM.vis.aud.df, RightFirst.vis.aud.df$RightChoice, LeftFirst.vis.aud.df$LeftChoice)
colnames(mean.vis.aud.df)[5:5] = c("Right")
colnames(mean.vis.aud.df)[6:6] = c("Left")
colnames(mean.vis.aud.df)[4:4] = c("SIM")
colnames(mean.vis.aud.df)[1:2] = c("Visual", "Audio")
# using reshape 2, we change the data frame to long format## measure.var column 3 up to column 5 i.e. 3,4,5
mean.vis.aud.long = melt(mean.vis.aud.df, measure.vars = 4:6, variable.name = "Report", value.name = "Prob")
# re-order levels of Report for presentation purposes
mean.vis.aud.long$Report = Relevel(mean.vis.aud.long$Report, ref = c("Left", "SIM", "Right"))
mean.vis.aud.long$Visual = Relevel(mean.vis.aud.long$Visual, ref = c("LeftCust","SIMCust","RightCust"))
#write.table(mean.vis.aud.long, "C:/Documents and Settings/psundere/My Documents/Analysis/Exp2_Pilot/reshape.txt",row.names=F)
##############################################################################################
##############################################################################################
# Calculate SD, SE Means etc.
##############################################################################################
##############################################################################################
CalSD <- mean.vis.aud.long[, c("Prob", "Report", "Visual", "Audio", "subject_nr")]
# Get the average effect size by Prob
CalSD.means <- aggregate(CalSD[c("Prob")],
by = CalSD[c("subject_nr", "Report", "Visual", "Audio")], FUN=mean)
#"correct","Circle1", "Beep1","correct_response", "response", "subject_nr"
# multiply by 100
CalSD.means$Prob <- CalSD.means$Prob*100
# Get the sample (n-1) standard deviation for "Probability"
CalSD.sd <- aggregate(CalSD.means["Prob"],
by = CalSD.means[c("Report","Visual", "Audio")], FUN=sd)
# Calculate SE --> SD / sqrt(N)
CalSD.se <- CalSD.sd$Prob / sqrt(25)
SE <- CalSD.se
# Confidence Interval @ 95% --> Standard Error * qt(0.975, N-1) SEE help(qt)
#.975 instead of .95 becasuse the 5% is 2.5% either side of the distribution
ci <- SE*qt(0.975,24)
##############################################################################################
##############################################################################################
###################################################
# Bar Graph
#mean.vis.aud.long$Audio <- factor (mean.vis.aud.long$Audio, levels = c("left", "2centre","NoBeep", "single","right"))
AggBar <- aggregate(mean.vis.aud.long$Prob*100,
by=list(mean.vis.aud.long$Report,mean.vis.aud.long$Visual, mean.vis.aud.long$Audio),FUN="mean")
#Change column names
colnames(AggBar) <- c("Report", "Visual", "Audio","Prob")
# Change the order of presentation
#CondPerRow$AuditoryCondition <- factor (CondPerRow$AuditoryCondition, levels = c("NoBeep", "left", "right"))
prob.bar = ggplot(AggBar, aes(x = Report, y = Prob, fill = Report)) + theme_bw() + facet_grid(Audio~Visual)
prob.bar + geom_bar(position=position_dodge(.9), stat="identity", colour="black") + theme(legend.position = "none") + labs(x="Report", y="Probability of Report") + scale_fill_grey() +
labs(title = expression("Visual Condition")) +
theme(plot.title = element_text(size = rel(1)))+
geom_errorbar(aes(ymin=Prob-ci, ymax=Prob+ci),
width=.2, # Width of the error bars
position=position_dodge(.9))+
theme(plot.title = element_text(size = rel(1.5)))+
scale_y_continuous(limits = c(0, 100), breaks = (seq(0,100,by = 10)))
This is what AggBar looks like after manipulation just before generating the graph:
Report Visual Audio Prob
1 Left LeftCust 2centre 81.84
2 SIM LeftCust 2centre 13.52
3 Right LeftCust 2centre 4.64
4 Left SIMCust 2centre 17.36
5 SIM SIMCust 2centre 69.76
6 Right SIMCust 2centre 12.88
7 Left RightCust 2centre 8.88
8 SIM RightCust 2centre 13.12
9 Right RightCust 2centre 78.00
10 Left LeftCust left 94.48
11 SIM LeftCust left 2.16
12 Right LeftCust left 3.36
13 Left SIMCust left 65.20
14 SIM SIMCust left 21.76
15 Right SIMCust left 13.04
16 Left RightCust left 31.12
17 SIM RightCust left 4.40
18 Right RightCust left 64.48
19 Left LeftCust NoBeep 66.00
20 SIM LeftCust NoBeep 26.08
21 Right LeftCust NoBeep 7.92
22 Left SIMCust NoBeep 10.96
23 SIM SIMCust NoBeep 78.88
24 Right SIMCust NoBeep 10.16
25 Left RightCust NoBeep 8.48
26 SIM RightCust NoBeep 26.24
27 Right RightCust NoBeep 65.28
28 Left LeftCust right 62.32
29 SIM LeftCust right 6.08
30 Right LeftCust right 31.60
31 Left SIMCust right 17.76
32 SIM SIMCust right 22.16
33 Right SIMCust right 60.08
34 Left RightCust right 5.76
35 SIM RightCust right 3.60
36 Right RightCust right 90.64
37 Left LeftCust single 49.92
38 SIM LeftCust single 47.84
39 Right LeftCust single 2.24
40 Left SIMCust single 6.56
41 SIM SIMCust single 87.52
42 Right SIMCust single 5.92
43 Left RightCust single 3.20
44 SIM RightCust single 52.40
45 Right RightCust single 44.40
. . .
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Using the code put forward by Troy below I put a little twist on it and came up with a wee solution to the lack of patterns in ggplot2 for bar graphs.
Here's the code I used to add vertical lines to the bars to achieve a basic pattern for the correct response bars. I'm sure you clever folk out there could adapt this for your own needs with regard texture/patterns albeit basic ones:
######### ADD THIS LINE TO CREATE THE HIGHLIGHT SUBSET
HighlightDataCust <-AggBar[AggBar$Report==gsub("Cust", "", AggBar$Visual),]
#####################################################
prob.bar = ggplot(AggBar, aes(x = Report, y = Prob, fill = Report)) + theme_bw() + facet_grid(Audio~Visual)
prob.bar + geom_bar(position=position_dodge(.9), stat="identity", colour="black") + theme(legend.position = "none") + labs(x="Response", y="Probability of Report") + scale_fill_grey() +
######### ADD THIS LINE TO CREATE THE HIGHLIGHT SUBSET
geom_bar(data=HighlightDataCust, position=position_dodge(.9), stat="identity", colour="black", size=2)+
geom_bar(data=HighlightDataCust, position=position_dodge(.9), stat="identity", colour="black", size=0.5, width=0.85)+
geom_bar(data=HighlightDataCust, position=position_dodge(.9), stat="identity", colour="black", size=0.5, width=0.65)+
geom_bar(data=HighlightDataCust, position=position_dodge(.9), stat="identity", colour="black", size=0.5, width=0.45)+
geom_bar(data=HighlightDataCust, position=position_dodge(.9), stat="identity", colour="black", size=0.5, width=0.25)+
geom_bar(data=HighlightDataCust, position=position_dodge(.9), stat="identity", colour="black", width=0.0) +
######################################################
labs(title = expression("Visual Condition")) +
theme(text=element_text(size=18))+
theme(axis.title.x=element_text(size=18))+
theme(axis.title.y=element_text(size=18))+
theme(axis.text.x=element_text(size=12))+
geom_errorbar(aes(ymin=Prob-ci, ymax=Prob+ci),
width=.2, # Width of the error bars
position=position_dodge(.9))+
theme(plot.title = element_text(size = 18))+
scale_y_continuous(limits = c(0, 100), breaks = (seq(0,100,by = 10)))
This is the output. Clearly the lines can be made any colour you wish and a mix of colours. Just make sure you start off with the widest width and and work towards 0.0 so the layers don't over-write. Hope someone finds this useful. (It should also be possible to create horizontal lines inside bars if one were to create multiple layers with different y-axis heights i.e. the top of each differing bar height would appear like a horizontal line. Haven't tested this myself but it may be worth looking into for those that require more than one bar pattern. Combining both in one bar should result in a mesh pattern and forget not that different colours can also be used. In short I think this approach is a decent fix for the lack of pattern in ggplot2.)
I have created an example of the 3 types of pattern I mentioned here: How to add texture to fill colors in ggplot2?
I haven't got your data so I have used the
diamonds
dataset to demonstrate.Basically you need to 'overplot' a second
geom_bar()
call, where you filter thedata=
attribute to only draw the bars you want to highlight. Just filter the original data to exclude anything you don't want. e.g below we replot the subsetdiamonds[(diamonds$clarity=="SI2"),]
NB obviously your filter will be more complicated, e.g.
OK updated with your data. I had to make up confidence intervals because they weren't available in the AggBar2 data:
Similar to Troy's answer, but rather than creating a layer of invisible bars, you can use the
size
aesthetic andscale_size_manual
:Which produces the following plot: