I am trying to write a C++ program that takes the following inputs from the user to construct rectangles (between 2 and 5): height, width, x-pos, y-pos. All of these rectangles will exist parallel to the x and the y axis, that is all of their edges will have slopes of 0 or infinity.
I've tried to implement what is mentioned in this question but I am not having very much luck.
My current implementation does the following:
// Gets all the vertices for Rectangle 1 and stores them in an array -> arrRect1
// point 1 x: arrRect1[0], point 1 y: arrRect1[1] and so on...
// Gets all the vertices for Rectangle 2 and stores them in an array -> arrRect2
// rotated edge of point a, rect 1
int rot_x, rot_y;
rot_x = -arrRect1[3];
rot_y = arrRect1[2];
// point on rotated edge
int pnt_x, pnt_y;
pnt_x = arrRect1[2];
pnt_y = arrRect1[3];
// test point, a from rect 2
int tst_x, tst_y;
tst_x = arrRect2[0];
tst_y = arrRect2[1];
int value;
value = (rot_x * (tst_x - pnt_x)) + (rot_y * (tst_y - pnt_y));
cout << "Value: " << value;
However I'm not quite sure if (a) I've implemented the algorithm I linked to correctly, or if I did exactly how to interpret this?
Any suggestions?
"If you perform subtraction x or y coordinates corresponding to the vertices of the two facing each rectangle, if the results are the same sign, the two rectangle do not overlap axes that" (i am sorry, i am not sure my translation is correct)
Source: http://www.ieev.org/2009/05/kiem-tra-hai-hinh-chu-nhat-chong-nhau.html
In the question, you link to the maths for when rectangles are at arbitrary angles of rotation. If I understand the bit about angles in the question however, I interpret that all rectangles are perpendicular to one another.
A general knowing the area of overlap formula is:
Using the example:
1) collect all the x coordinates (both left and right) into a list, then sort it and remove duplicates
2) collect all the y coordinates (both top and bottom) into a list, then sort it and remove duplicates
3) create a 2D array by number of gaps between the unique x coordinates * number of gaps between the unique y coordinates.
4) paint all the rectangles into this grid, incrementing the count of each cell it occurs over:
5) As you paint the rectangles, its easy to intercept the overlaps.
Java code to figure out if Rectangles are contacting or overlapping each other
...
...
Here's how it's done in the Java API:
I have implemented a C# version, it is easily converted to C++.