I am trying to write a C++ program that takes the following inputs from the user to construct rectangles (between 2 and 5): height, width, x-pos, y-pos. All of these rectangles will exist parallel to the x and the y axis, that is all of their edges will have slopes of 0 or infinity.
I've tried to implement what is mentioned in this question but I am not having very much luck.
My current implementation does the following:
// Gets all the vertices for Rectangle 1 and stores them in an array -> arrRect1
// point 1 x: arrRect1[0], point 1 y: arrRect1[1] and so on...
// Gets all the vertices for Rectangle 2 and stores them in an array -> arrRect2
// rotated edge of point a, rect 1
int rot_x, rot_y;
rot_x = -arrRect1[3];
rot_y = arrRect1[2];
// point on rotated edge
int pnt_x, pnt_y;
pnt_x = arrRect1[2];
pnt_y = arrRect1[3];
// test point, a from rect 2
int tst_x, tst_y;
tst_x = arrRect2[0];
tst_y = arrRect2[1];
int value;
value = (rot_x * (tst_x - pnt_x)) + (rot_y * (tst_y - pnt_y));
cout << "Value: " << value;
However I'm not quite sure if (a) I've implemented the algorithm I linked to correctly, or if I did exactly how to interpret this?
Any suggestions?
I have a very easy solution
let x1,y1 x2,y2 ,l1,b1,l2,be cordinates and lengths and breadths of them respectively
consider the condition ((x2
now the only way these rectangle will overlap is if the point diagonal to x1,y1 will lie inside the other rectangle or similarly the point diagonal to x2,y2 will lie inside the other rectangle. which is exactly the above condition implies.
Easiest way is
first of all put it in to your mind that in computers the coordinates system is upside down. x-axis is same as in mathematics but y-axis increases downwards and decrease on going upward.. if rectangle are drawn from center. if x1 coordinates is greater than x2 plus its its half of widht. then it means going half they will touch each other. and in the same manner going downward + half of its height. it will collide..
For those of you who are using center points and half sizes for their rectangle data, instead of the typical x,y,w,h, or x0,y0,x1,x1, here's how you can do it:
Ask yourself the opposite question: How can I determine if two rectangles do not intersect at all? Obviously, a rectangle A completely to the left of rectangle B does not intersect. Also if A is completely to the right. And similarly if A is completely above B or completely below B. In any other case A and B intersect.
What follows may have bugs, but I am pretty confident about the algorithm:
It is easier to check if a rectangle is completly outside the other, so if it is either
on the left...
or on the right...
or on top...
or on the bottom...
of the second rectangle, it cannot possibly collide with it. So to have a function that returns a Boolean saying weather the rectangles collide, we simply combine the conditions by logical ORs and negate the result:
To already receive a positive result when touching only, we can change the "<" and ">" by "<=" and ">=".