According to following results, generating uniform random integers between two numbers using %
operation is almost 3 times faster than using std::uniform_int_distribution
: Is there any good reason to use std::uniform_int_distribution
?
Code:
#include <iostream>
#include <functional>
#include <vector>
#include <algorithm>
#include <random>
#include <cstdio>
#include <cstdlib>
using namespace std;
#define N 100000000
int main()
{
clock_t tic,toc;
for(int trials=0; trials<3; trials++)
{
cout<<"trial: "<<trials<<endl;
// uniform_int_distribution
{
int res = 0;
mt19937 gen(1);
uniform_int_distribution<int> dist(0,999);
tic = clock();
for(int i=0; i<N; i++)
{
int r = dist(gen);
res += r;
res %= 1000;
}
toc = clock();
cout << "uniform_int_distribution: "<<(float)(toc-tic)/CLOCKS_PER_SEC << endl;
cout<<res<<" "<<endl;
}
// simple modulus operation
{
int res = 0;
mt19937 gen(1);
tic = clock();
for(int i=0; i<N; i++)
{
int r = gen()%1000;
res += r;
res %= 1000;
}
toc = clock();
cout << "simple modulus operation: "<<(float)(toc-tic)/CLOCKS_PER_SEC << endl;
cout<<res<<" "<<endl;
}
cout<<endl;
}
}
Output:
trial: 0
uniform_int_distribution: 2.90289
538
simple modulus operation: 1.0232
575
trial: 1
uniform_int_distribution: 2.86416
538
simple modulus operation: 1.01866
575
trial: 2
uniform_int_distribution: 2.94309
538
simple modulus operation: 1.01809
575
You will get statistical bias when you use modulo (
%
) to map the range of e.g.rand()
to another interval.E.g suppose
rand()
maps uniformly (without bias) to[0, 32767]
and you want to map to[0,4]
doingrand() % 5
. Then the values 0, 1, and 2 will on average be produced 6554 out of 32768 times, but the values 3 and 4 only 6553 times (so that 3 * 6554 + 2 * 6553 = 32768).The bias is small (0.01%) but depending on your application that could prove fatal. Watch Stephan T. Lavavej's talk "rand() considered harmful" for more details.