I need to represent directed graphs in Clojure. I'd like to represent each node in the graph as an object (probably a record) that includes a field called :edges
that is a collection of the nodes that are directly reachable from the current node. Hopefully it goes without saying, but I would like these graphs to be immutable.
I can construct directed acyclic graphs with this approach as long as I do a topological sort and build each graph "from the leaves up".
This approach doesn't work for cyclic graphs, however. The one workaround I can think of is to have a separate collection (probably a map or vector) of all of the edges for an entire graph. The :edges
field in each node would then have the key (or index) into the graph's collection of edges. Adding this extra level of indirection works because I can create keys (or indexes) before the things they (will) refer to exist, but it feels like a kludge. Not only do I need to do an extra lookup whenever I want to visit a neighboring node, but I also have to pass around the global edges collection, which feels very clumsy.
I've heard that some Lisps have a way of creating cyclic lists without resorting to mutation functions. Is there a way to create immutable cyclic data structures in Clojure?
I've been playing with this the last few days.
I first tried making each node hold a set of refs to edges, and each edge hold a set of refs to the nodes. I set them equal to each other in a
(dosync... (ref-set...))
type of operation. I didn't like this because changing one node requires a large amount of updates, and printing out the graph was a bit tricky. I had to override theprint-method
multimethod so the repl wouldn't stack overflow. Also any time I wanted to add an edge to an existing node, I had to extract the actual node from the graph first, then do all sorts of edge updates and that sort of thing to make sure everyone was holding on to the most recent version of the other thing. Also, because things were in a ref, determining whether something was connected to something else was a linear-time operation, which seemed inelegant. I didn't get very far before determining that actually performing any useful algorithms with this method would be difficult.Then I tried another approach which is a variation of the matrix referred to elsewhere. The graph is a clojure map, where the keys are the nodes (not refs to nodes), and the values are another map in which the keys are the neighboring nodes and single value of each key is the edge to that node, represented either as a numerical value indicating the strength of the edge, or an edge structure which I defined elsewhere.
It looks like this, sort of, for
1->2, 1->3, 2->5, 5->2
To access the neighbors of node-1 you go
(keys (graph node-1))
or call the function defined elsewhere(neighbors graph node-1)
, or you can say((graph node-1) node-2)
to get the edge from1->2
.Several advantages:
The only big-ish disadvantage I see is that for any given operation (add, remove, any algorithm), you can't just pass it a starting node. You have to pass the whole graph map and a starting node, which is probably a fair price to pay for the simplicity of the whole thing. Another minor disadvantage (or maybe not) is that for an undirected edge you have to define the edge in each direction. This is actually okay because sometimes an edge has a different value for each direction and this scheme allows you to do that.
The only other thing I see here is that because an edge is implicit in the existence of a key-value pair in the map, you cannot define a hyperedge (ie one which connects more than 2 nodes). I don't think this is a big deal necessarily since most graph algorithms I've come across (all?) only deal with an edge that connects 2 nodes.
You can wrap each node in a ref to give it a stable handle to point at (and allow you to modify the reference which can start as nil). It is then possible to possible to build cyclic graphs that way. This does have "extra" indirection of course.
I don't think this is a very good idea though. Your second idea is a more common implementation. We built something like this to hold an RDF graph and it is possible to build it out of the core data structures and layer indices over the top of it without too much effort.
I ran into this challenge before and concluded that it isn't possible using truly immutable data structures in Clojure at present.
However you may find one or more of the following options acceptable: