I have previously registered a UDF with hive. It is permanent not TEMPORARY
. It works in beeline.
CREATE FUNCTION normaliseURL AS 'com.example.hive.udfs.NormaliseURL' USING JAR 'hdfs://udfs/hive-udfs.jar';
I have spark configured to use the hive metastore. The config is working as I can query hive tables. I can see the UDF;
In [9]: spark.sql('describe function normaliseURL').show(truncate=False)
+-------------------------------------------+
|function_desc |
+-------------------------------------------+
|Function: default.normaliseURL |
|Class: com.example.hive.udfs.NormaliseURL |
|Usage: N/A. |
+-------------------------------------------+
However I cannot use the UDF in a sql statement;
spark.sql('SELECT normaliseURL("value")')
AnalysisException: "Undefined function: 'default.normaliseURL'. This function is neither a registered temporary function nor a permanent function registered in the database 'default'.; line 1 pos 7"
If I attempt to register the UDF with spark (bypassing the metastore) it fails to register it, suggesting that it does already exist.
In [12]: spark.sql("create function normaliseURL as 'com.example.hive.udfs.NormaliseURL'")
AnalysisException: "Function 'default.normaliseURL' already exists in database 'default';"
I'm using Spark 2.0, hive metastore 1.1.0. The UDF is scala, my spark driver code is python.
I'm stumped.
- Am I correct in my assumption that Spark can utilise metastore-defined permanent UDFs?
- Am I creating the function correctly in hive?
A Function can not called directly in select (like sql server) .
You have to create some dumy table like oracle.
load data local in path '/path/to/textfile/dual.txt' overwrite into table dual;
or
It will work on spark on yarn environment however as suggested you need to use
spark-shell --jars <path-to-your-hive-udf>.jar
not in hdfs but in local.Issue is Spark 2.0 is not able to execute the functions whose JARs are located on HDFS.
Spark SQL: Thriftserver unable to run a registered Hive UDTF
One workaround is to define the function as a temporary function in Spark job with jar path pointing to a local edge-node path. Then call the function in same Spark job.