/* Program to demonstrate gaussian <strong class="highlight">elimination</strong>
on a set of linear simultaneous equations
*/
#include <iostream>
#include <cmath>
#include <vector>
using namespace std;
const double eps = 1.e-15;
/*Preliminary pivoting strategy
Pivoting function
*/
double pivot(vector<vector<double> > &a, vector<double> &b, int i)
{
int n = a.size();
int j=i;
double t=0;
for(int k=i; k<n; k+=1)
{
double aki = fabs(a[k][i]);
if(aki>t)
{
t=aki;
j=k;
}
}
if(j>i)
{
double dummy;
for(int L=0; L<n; L+=1)
{
dummy = a[i][L];
a[i][L]= a[j][L];
a[j][L]= dummy;
}
double temp = b[j];
b[i]=b[j];
b[j]=temp;
}
return a[i][i];
}
/* Forward <strong class="highlight">elimination</strong> */
void triang(vector<vector<double> > &a, vector<double> &b)
{
int n = a.size();
for(int i=0; i<n-1; i+=1)
{
double diag = pivot(a,b,i);
if(fabs(diag)<eps)
{
cout<<"zero det"<<endl;
return;
}
for(int j=i+1; j<n; j+=1)
{
double mult = a[j][i]/diag;
for(int k = i+1; k<n; k+=1)
{
a[j][k]-=mult*a[i][k];
}
b[j]-=mult*b[i];
}
}
}
/*
DOT PRODUCT OF TWO VECTORS
*/
double dotProd(vector<double> &u, vector<double> &v, int k1,int k2)
{
double sum = 0;
for(int i = k1; i <= k2; i += 1)
{
sum += u[i] * v[i];
}
return sum;
}
/*
BACK SUBSTITUTION STEP
*/
void backSubst(vector<vector<double> > &a, vector<double> &b, vector<double> &x)
{
int n = a.size();
for(int i = n-1; i >= 0; i -= 1)
{
x[i] = (b[i] - dotProd(a[i], x, i + 1, n-1))/ a[i][i];
}
}
/*
REFINED GAUSSIAN <strong class="highlight">ELIMINATION</strong> PROCEDURE
*/
void gauss(vector<vector<double> > &a, vector<double> &b, vector<double> &x)
{
triang(a, b);
backSubst(a, b, x);
}
// EXAMPLE MAIN PROGRAM
int main()
{
int n;
cin >> n;
vector<vector<double> > a;
vector<double> x;
vector<double> b;
for (int i = 0; i < n; i++) {
vector<double> temp;
for (int j = 0; j < n; j++) {
int no;
cin >> no;
temp.push_back(no);
}
a.push_back(temp);
b.push_back(0);
x.push_back(0);
}
/*
for (int i = 0; i < n; i++) {
int no;
cin >> no;
b.push_back(no);
x.push_back(0);
}
*/
gauss(a, b, x);
for (size_t i = 0; i < x.size(); i++) {
cout << x[i] << endl;
}
return 0;
}
The above gaussian eleimination algorithm works fine on NxN matrices. But I need it to work on NxM matrix. Can anyone help me to do it? I am not very good at maths. I got this code on some website and i am stuck at it.
You can apply echelon reduction, like in this snippet
You just cannot apply Gaussian elimination directly to an NxM problem. If you have more equations than unknowns, the your problem is over-determined and you have no solution, which means you need to use something like the least squares method. Say that you have A*x = b, then instead of having x = inv(A)*b (when N=M), then you have to do x = inv(A^T*A)*A^T*b.
In the case where you have less equations then unknowns, then your problem is underdetermined and you have an infinity of solutions. In that case, you either pick one at random (e.g. setting some of the unknowns to an arbitrary value), or you need to use regularization, which means trying adding some extra constraints.