I need a timer tick with 1ms resolution under linux. It is used to increment a timer value that in turn is used to see if various Events should be triggered. The POSIX timerfd_create is not an option because of the glibc requirement. I tried timer_create and timer_settimer, but the best I get from them is a 10ms resolution, smaller values seem to default to 10ms resolution. Getittimer and setitimer have a 10 ms resolution according to the manpage.
The only way to do this timer I can currently think of is to use clock_gettime with CLOCK_MONOTONIC in my main loop an test if a ms has passed, and if so to increase the counter (and then check if the various Events should fire).
Is there a better way to do this than to constantly query in the main loop? What is the recommended solution to this?
The language I am using is plain old c
Update
I am using a 2.6.26 Kernel. I know you can have it interrupt at 1kHz, and the POSIX timer_* functions then can be programmed to up to 1ms but that seems not to be reliable and I don't want to use that, because it may need a new kernel on some Systems. Some stock Kernel seem to still have the 100Hz configured. And I would need to detect that. The application may be run on something else than my System :)
I can not sleep for 1ms because there may be network events I have to react to.
How I resolved it Since it is not that important I simply declared that the global timer has a 100ms resolution. All events using their own timer have to set at least 100ms for timer expiration. I was more or less wondering if there would be a better way, hence the question.
Why I accepted the answer I think the answer from freespace best described why it is not really possible without a realtime Linux System.
Polling in the main loop isn't an answer either - your process might not get much CPU time, so more than 10ms will elapse before your code gets to run, rendering it moot.
10ms is about the standard timer resolution for most non-realtime operating systems (RTOS). But it is moot in a non-RTOS - the behaviour of the scheduler and dispatcher is going to greatly influence how quickly you can respond to a timer expiring. For example even suppose you had a sub 10ms resolution timer, you can't respond to the timer expiring if your code isn't running. Since you can't predict when your code is going to run, you can't respond to timer expiration accurately.
There is of course realtime linux kernels, see http://www.linuxdevices.com/articles/AT8073314981.html for a list. A RTOS offers facilities whereby you can get soft or hard guarantees about when your code is going to run. This is about the only way to reliably and accurately respond to timers expiring etc.
I think you'll have trouble achieving 1 ms precision with standard Linux even with constant querying in the main loop, because the kernel does not ensure your application will get CPU all the time. For example, you can be put to sleep for dozens of milliseconds because of preemptive multitasking and there's little you can do about it.
You might want to look into Real-Time Linux.
Are you running on a Linux 2.4 kernel?
From VMware KB article #1420 (http://kb.vmware.com/kb/1420).
If you are targeting x86 platform you should check HPET timers. This is hardware timer with large precision. It must be supported by your motherbord (right now all of them support it) and your kernel should contains driver for it as well. I have used it few times without any problems and was able to achieve much better resolution than 1ms.
Here is some documentation and examples:
Can you at least use nanosleep in your loop to sleep for 1ms? Or is that a glibc thing?
Update: Never mind, I see from the man page "it can take up to 10 ms longer than specified until the process becomes runnable again"
You don't need an RTOS for a simple real time application. All modern processors have General Purpose timers. Get a datasheet for whatever target CPU you are working on. Look in the kernel source, under the arch directory you will find processor specific source how to handle these timers.
There are two approaches you can take with this:
1) Your application is ONLY running your state machine, and nothing else. Linux is simply your "boot loader." Create a kernel object which installs a character device. On insertion into the kernel, set up your GP Timer to run continuously. You know the frequency it's operating at. Now, in the kernel, explicitly disable your watchdog. Now disable interrupts (hardware AND software) On a single-cpu Linux kernel, calling spin_lock() will accomplish this (never let go of it.) The CPU is YOURS. Busy loop, checking the value of the GPT until the required # of ticks have passed, when they have, set a value for the next timeout and enter your processing loop. Just make sure that the burst time for your code is under 1ms
2) A 2nd option. This assumes you are running a preemptive Linux kernel. Set up an unused a GPT along side your running OS. Now, set up an interrupt to fire some configurable margin BEFORE your 1ms timeout happens (say 50-75 uSec.) When the interrupt fires, you will immediately disable interrupts and spin waiting for 1ms window to occur, then entering your state machine and subsequently enabling interrupts on your wait OUT. This accounts for the fact that you are cooperating with OTHER things in the kernel which disable interrupts. This ASSUMES that there is no other kernel activity which locks out interrupts for a long time (more than 100us.) Now, you can MEASURE the accuracy of your firing event and make the window larger until it meets your need.
If instead you are trying to learn how RTOS's work...or if you are trying to solve a control problem with more than one real-time responsibility...then use an RTOS.