I'm building an application which contains two components - server written in Haskell, and client written in Qt (C++). I'm using thrift to communicate them, and I wonder why is it working so slow.
I made a performance test and here is the result on my machine
Results
C++ server and C++ client:
Sending 100 pings - 13.37 ms
Transfering 1000000 size vector - 433.58 ms
Recieved: 3906.25 kB
Transfering 100000 items from server - 1090.19 ms
Transfering 100000 items to server - 631.98 ms
Haskell server and C++ client:
Sending 100 pings 3959.97 ms
Transfering 1000000 size vector - 12481.40 ms
Recieved: 3906.25 kB
Transfering 100000 items from server - 26066.80 ms
Transfering 100000 items to server - 1805.44 ms
Why is Haskell so slow in this test? How can I improve it performance?
Here are the files:
Files
performance.thrift
namespace hs test
namespace cpp test
struct Item {
1: optional string name
2: optional list<i32> coordinates
}
struct ItemPack {
1: optional list<Item> items
2: optional map<i32, Item> mappers
}
service ItemStore {
void ping()
ItemPack getItems(1:string name, 2: i32 count)
bool setItems(1: ItemPack items)
list<i32> getVector(1: i32 count)
}
Main.hs
{-# LANGUAGE ScopedTypeVariables #-}
module Main where
import Data.Int
import Data.Maybe (fromJust)
import qualified Data.Vector as Vector
import qualified Data.HashMap.Strict as HashMap
import Network
-- Thrift libraries
import Thrift.Server
-- Generated Thrift modules
import Performance_Types
import ItemStore_Iface
import ItemStore
i32toi :: Int32 -> Int
i32toi = fromIntegral
itoi32 :: Int -> Int32
itoi32 = fromIntegral
port :: PortNumber
port = 9090
data ItemHandler = ItemHandler
instance ItemStore_Iface ItemHandler where
ping _ = return () --putStrLn "ping"
getItems _ mtname mtsize = do
let size = i32toi $ fromJust mtsize
item i = Item mtname (Just $ Vector.fromList $ map itoi32 [i..100])
items = map item [0..(size-1)]
itemsv = Vector.fromList items
mappers = zip (map itoi32 [0..(size-1)]) items
mappersh = HashMap.fromList mappers
itemPack = ItemPack (Just itemsv) (Just mappersh)
putStrLn "getItems"
return itemPack
setItems _ _ = do putStrLn "setItems"
return True
getVector _ mtsize = do putStrLn "getVector"
let size = i32toi $ fromJust mtsize
return $ Vector.generate size itoi32
main :: IO ()
main = do
_ <- runBasicServer ItemHandler process port
putStrLn "Server stopped"
ItemStore_client.cpp
#include <iostream>
#include <chrono>
#include "gen-cpp/ItemStore.h"
#include <transport/TSocket.h>
#include <transport/TBufferTransports.h>
#include <protocol/TBinaryProtocol.h>
using namespace apache::thrift;
using namespace apache::thrift::protocol;
using namespace apache::thrift::transport;
using namespace test;
using namespace std;
#define TIME_INIT std::chrono::_V2::steady_clock::time_point start, stop; \
std::chrono::duration<long long int, std::ratio<1ll, 1000000000ll> > duration;
#define TIME_START start = std::chrono::steady_clock::now();
#define TIME_END duration = std::chrono::steady_clock::now() - start; \
std::cout << chrono::duration <double, std::milli> (duration).count() << " ms" << std::endl;
int main(int argc, char **argv) {
boost::shared_ptr<TSocket> socket(new TSocket("localhost", 9090));
boost::shared_ptr<TTransport> transport(new TBufferedTransport(socket));
boost::shared_ptr<TProtocol> protocol(new TBinaryProtocol(transport));
ItemStoreClient server(protocol);
transport->open();
TIME_INIT
long pings = 100;
cout << "Sending " << pings << " pings" << endl;
TIME_START
for(auto i = 0 ; i< pings ; ++i)
server.ping();
TIME_END
long vectorSize = 1000000;
cout << "Transfering " << vectorSize << " size vector" << endl;
std::vector<int> v;
TIME_START
server.getVector(v, vectorSize);
TIME_END
cout << "Recieved: " << v.size()*sizeof(int) / 1024.0 << " kB" << endl;
long itemsSize = 100000;
cout << "Transfering " << itemsSize << " items from server" << endl;
ItemPack items;
TIME_START
server.getItems(items, "test", itemsSize);
TIME_END
cout << "Transfering " << itemsSize << " items to server" << endl;
TIME_START
server.setItems(items);
TIME_END
transport->close();
return 0;
}
ItemStore_server.cpp
#include "gen-cpp/ItemStore.h"
#include <thrift/protocol/TBinaryProtocol.h>
#include <thrift/server/TSimpleServer.h>
#include <thrift/transport/TServerSocket.h>
#include <thrift/transport/TBufferTransports.h>
#include <map>
#include <vector>
using namespace ::apache::thrift;
using namespace ::apache::thrift::protocol;
using namespace ::apache::thrift::transport;
using namespace ::apache::thrift::server;
using namespace test;
using boost::shared_ptr;
class ItemStoreHandler : virtual public ItemStoreIf {
public:
ItemStoreHandler() {
}
void ping() {
// printf("ping\n");
}
void getItems(ItemPack& _return, const std::string& name, const int32_t count) {
std::vector <Item> items;
std::map<int, Item> mappers;
for(auto i = 0 ; i < count ; ++i){
std::vector<int> coordinates;
for(auto c = i ; c< 100 ; ++c)
coordinates.push_back(c);
Item item;
item.__set_name(name);
item.__set_coordinates(coordinates);
items.push_back(item);
mappers[i] = item;
}
_return.__set_items(items);
_return.__set_mappers(mappers);
printf("getItems\n");
}
bool setItems(const ItemPack& items) {
printf("setItems\n");
return true;
}
void getVector(std::vector<int32_t> & _return, const int32_t count) {
for(auto i = 0 ; i < count ; ++i)
_return.push_back(i);
printf("getVector\n");
}
};
int main(int argc, char **argv) {
int port = 9090;
shared_ptr<ItemStoreHandler> handler(new ItemStoreHandler());
shared_ptr<TProcessor> processor(new ItemStoreProcessor(handler));
shared_ptr<TServerTransport> serverTransport(new TServerSocket(port));
shared_ptr<TTransportFactory> transportFactory(new TBufferedTransportFactory());
shared_ptr<TProtocolFactory> protocolFactory(new TBinaryProtocolFactory());
TSimpleServer server(processor, serverTransport, transportFactory, protocolFactory);
server.serve();
return 0;
}
Makefile
GEN_SRC := gen-cpp/ItemStore.cpp gen-cpp/performance_constants.cpp gen-cpp/performance_types.cpp
GEN_OBJ := $(patsubst %.cpp,%.o, $(GEN_SRC))
THRIFT_DIR := /usr/local/include/thrift
BOOST_DIR := /usr/local/include
INC := -I$(THRIFT_DIR) -I$(BOOST_DIR)
.PHONY: all clean
all: ItemStore_server ItemStore_client
%.o: %.cpp
$(CXX) --std=c++11 -Wall -DHAVE_INTTYPES_H -DHAVE_NETINET_IN_H $(INC) -c $< -o $@
ItemStore_server: ItemStore_server.o $(GEN_OBJ)
$(CXX) $^ -o $@ -L/usr/local/lib -lthrift -DHAVE_INTTYPES_H -DHAVE_NETINET_IN_H
ItemStore_client: ItemStore_client.o $(GEN_OBJ)
$(CXX) $^ -o $@ -L/usr/local/lib -lthrift -DHAVE_INTTYPES_H -DHAVE_NETINET_IN_H
clean:
$(RM) *.o ItemStore_server ItemStore_client
Compile and run
I generate files (using thrift 0.9 available here) with:
$ thrift --gen cpp performance.thrift
$ thrift --gen hs performance.thrift
Compile with
$ make
$ ghc Main.hs gen-hs/ItemStore_Client.hs gen-hs/ItemStore.hs gen-hs/ItemStore_Iface.hs gen-hs/Performance_Consts.hs gen-hs/Performance_Types.hs -Wall -O2
Run Haskell test:
$ ./Main&
$ ./ItemStore_client
Run C++ test:
$ ./ItemStore_server&
$ ./ItemStore_client
Remember to kill server after each test
Update
Edited getVector
method to use Vector.generate
instead of Vector.fromList
, but still no effect
Update 2
Due to suggestion of @MdxBhmt I tested the getItems
function as follows:
getItems _ mtname mtsize = do let size = i32toi $! fromJust mtsize
item i = Item mtname (Just $! Vector.enumFromN (i::Int32) (100- (fromIntegral i)))
itemsv = Vector.map item $ Vector.enumFromN 0 (size-1)
itemPack = ItemPack (Just itemsv) Nothing
putStrLn "getItems"
return itemPack
which is strict and has improved Vector generation vs its alternative based on my original implementation:
getItems _ mtname mtsize = do let size = i32toi $ fromJust mtsize
item i = Item mtname (Just $ Vector.fromList $ map itoi32 [i..100])
items = map item [0..(size-1)]
itemsv = Vector.fromList items
itemPack = ItemPack (Just itemsv) Nothing
putStrLn "getItems"
return itemPack
Notice that there is no HashMap sent. The first version gives time 12338.2 ms and the second is 11698.7 ms, no speedup :(
Update 3
I reported an issue to Thrift Jira
Update 4 by abhinav
This is completely unscientific but using GHC 7.8.3 with Thrift 0.9.2 and @MdxBhmt's version of getItems
, the discrepancy is significantly reduced.
C++ server and C++ client:
Sending 100 pings: 8.56 ms
Transferring 1000000 size vector: 137.97 ms
Recieved: 3906.25 kB
Transferring 100000 items from server: 467.78 ms
Transferring 100000 items to server: 207.59 ms
Haskell server and C++ client:
Sending 100 pings: 24.95 ms
Recieved: 3906.25 kB
Transferring 1000000 size vector: 378.60 ms
Transferring 100000 items from server: 233.74 ms
Transferring 100000 items to server: 913.07 ms
Multiple executions were performed, restarting the server each time. The results are reproducible.
Note that the source code from the original question (with @MdxBhmt's getItems
implementation) will not compile as-is. The following changes will have to be made:
getItems _ mtname mtsize = do let size = i32toi $! fromJust mtsize
item i = Item mtname (Just $! Vector.enumFromN (i::Int32) (100- (fromIntegral i)))
itemsv = Vector.map item $ Vector.enumFromN 0 (size-1)
itemPack = ItemPack (Just itemsv) Nothing
putStrLn "getItems"
return itemPack
getVector _ mtsize = do putStrLn "getVector"
let size = i32toi $ fromJust mtsize
return $ Vector.generate size itoi32
This is fairly consistent with what user13251 says: The haskell implementation of thrift implies a large number of small reads.
EG: In Thirft.Protocol.Binary
Lets ignore the other odd bits and just focus on that for now. This says: "to read a 32bit int: read 4 bytes from the transport then decode this lazy bytestring."
The transport method reads exactly 4 bytes using the lazy bytestring hGet. The hGet will do the following: allocate a buffer of 4 bytes then use hGetBuf to fill this buffer. hGetBuf might be using an internal buffer, depends on how the Handle was initialized.
So there might be some buffering. Even so, this means Thrift for haskell is performing the read/decode cycle for each integer individually. Allocating a small memory buffer each time. Ouch!
I don't really see a way to fix this without the Thrift library being modified to perform larger bytestring reads.
Then there are the other oddities in the thrift implementation: Using a classes for a structure of methods. While they look similar and can act like a structure of methods and are even implemented as a structure of methods sometimes: They should not be treated as such. See the "Existential Typeclass" antipattern:
One odd part of the test implementation:
Though, I suspect, this is not the primary source of performance issues.
You should take a look at Haskell profiling methods to find what resources your program uses/allocates and where.
The chapter on profiling in Real World Haskell is a good starting point.
Everyone is pointing out that is the culprit is the thrift library, but I'll focus on your code (and where I can help getting some speed)
Using a simplified version of your code, where you calculate
itemsv
:First, you have many intermediate data being created in
item i
. Due to lazyness, those small and fast to calculate vectors becomes delayed thunks of data, when we could had them right away.Having 2 carefully placed
$!
, that represent strict evaluation :Will give you a 25% decrease in runtime (for size 1e5 and 1e6).
But there is a more problematic pattern here: you generate a list to convert it as a vector, in place of building the vector directly.
Look those 2 last lines, you create a list -> map a function -> transform into a vector.
Well, vectors are very similar to list, you can do something similar! So you'll have to generate a vector -> vector.map over it and done. No more need to convert a list into a vector, and maping on vector is usually faster than a list!
So you can get rid of
items
and re-write the followingitemsv
:Reapplying the same logic to
item i
, we eliminate all lists.This has a 50% decrease over the initial runtime.
The Haskell implementation of the basic thrift server you're using uses threading internally, but you didn't compile it to use multiple cores.
To do the test again using multiple cores, change your command line for compiling the Haskell program to include
-rtsopts
and-threaded
, then run the final binary like./Main -N4 &
, where 4 is the number of cores to use.I don't see any reference to buffering in the Haskell server. In C++, if you don't buffer, you incur one system call for every vector/list element. I suspect the same thing is happening in the Haskell server.
I don't see a buffered transport in Haskell directly. As an experiment, you may want to change both the client and server to use a framed transport. Haskell does have a framed transport, and it is buffered. Note that this will change the wire layout.
As a separate experiment, you may want to turn -off- buffering for C++ and see if the performance numbers are comparable.