Software Engineering as it is taught today is entirely focused on object-oriented programming and the 'natural' object-oriented view of the world. There is a detailed methodology that describes how to transform a domain model into a class model with several steps and a lot of (UML) artifacts like use-case-diagrams or class-diagrams. Many programmers have internalized this approach and have a good idea about how to design an object-oriented application from scratch.
The new hype is functional programming, which is taught in many books and tutorials. But what about functional software engineering? While reading about Lisp and Clojure, I came about two interesting statements:
Functional programs are often developed bottom up instead of top down ('On Lisp', Paul Graham)
Functional Programmers use Maps where OO-Programmers use objects/classes ('Clojure for Java Programmers', talk by Rich Hickley).
So what is the methodology for a systematic (model-based ?) design of a functional application, i.e. in Lisp or Clojure? What are the common steps, what artifacts do I use, how do I map them from the problem space to the solution space?
For Clojure, I recommend going back to good old relational modeling. Out of the Tarpit is an inspirational read.
One approach is to create an internal DSL within the functional programming language of choice. The "model" then is a set of business rules expressed in the DSL.
Honestly if you want design recipes for functional programs, take a look at the standard function libraries such as Haskell's Prelude. In FP, patterns are usually captured by higher order procedures (functions that operate on functions) themselves. So if a pattern is seen, often a higher order function is simply created to capture that pattern.
A good example is fmap. This function takes a function as an argument and applies it to all the "elements" of the second argument. Since it is part of the Functor type class, any instance of a Functor (such as a list, graph, etc...) may be passed as a second argument to this function. It captures the general behavior of applying a function to every element of its second argument.
I've recently found this book: Functional and Reactive Domain Modeling
I think is perfectly in line with your question.
From the book description:
Personally I find that all the usual good practices from OO development apply in functional programming as well - just with a few minor tweaks to take account of the functional worldview. From a methodology perspective, you don't really need to do anything fundamentally different.
My experience comes from having moved from Java to Clojure in recent years.
Some examples:
Understand your business domain / data model - equally important whether you are going to design an object model or create a functional data structure with nested maps. In some ways, FP can be easier because it encourages you to think about data model separately from functions / processes but you still have to do both.
Service orientation in design - actually works very well from a FP perspective, since a typical service is really just a function with some side effects. I think that the "bottom up" view of software development sometimes espoused in the Lisp world is actually just good service-oriented API design principles in another guise.
Test Driven Development - works well in FP languages, in fact sometimes even better because pure functions lend themselves extremely well to writing clear, repeatable tests without any need for setting up a stateful environment. You might also want to build separate tests to check data integrity (e.g. does this map have all the keys in it that I expect, to balance the fact that in an OO language the class definition would enforce this for you at compile time).
Prototying / iteration - works just as well with FP. You might even be able to prototype live with users if you get very extremely good at building tools / DSL and using them at the REPL.
While this might be considered naive and simplistic, I think "design recipes" (a systematic approach to problem solving applied to programming as advocated by Felleisen et al. in their book HtDP) would be close to what you seem to be looking for.
Here, a few links:
http://www.northeastern.edu/magazine/0301/programming.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.8371