Flatten an irregular list of lists

2018-12-30 22:08发布

Yes, I know this subject has been covered before (here, here, here, here), but as far as I know, all solutions, except for one, fail on a list like this:

L = [[[1, 2, 3], [4, 5]], 6]

Where the desired output is

[1, 2, 3, 4, 5, 6]

Or perhaps even better, an iterator. The only solution I saw that works for an arbitrary nesting is found in this question:

def flatten(x):
    result = []
    for el in x:
        if hasattr(el, "__iter__") and not isinstance(el, basestring):
            result.extend(flatten(el))
        else:
            result.append(el)
    return result

flatten(L)

Is this the best model? Did I overlook something? Any problems?

30条回答
流年柔荑漫光年
2楼-- · 2018-12-30 22:55

Here is another py2 approach, Im not sure if its the fastest or the most elegant nor safest ...

from collections import Iterable
from itertools import imap, repeat, chain


def flat(seqs, ignore=(int, long, float, basestring)):
    return repeat(seqs, 1) if any(imap(isinstance, repeat(seqs), ignore)) or not isinstance(seqs, Iterable) else chain.from_iterable(imap(flat, seqs))

It can ignore any specific (or derived) type you would like, it returns an iterator, so you can convert it to any specific container such as list, tuple, dict or simply consume it in order to reduce memory footprint, for better or worse it can handle initial non-iterable objects such as int ...

Note most of the heavy lifting is done in C, since as far as I know thats how itertools are implemented, so while it is recursive, AFAIK it isn't bounded by python recursion depth since the function calls are happening in C, though this doesn't mean you are bounded by memory, specially in OS X where its stack size has a hard limit as of today (OS X Mavericks) ...

there is a slightly faster approach, but less portable method, only use it if you can assume that the base elements of the input can be explicitly determined otherwise, you'll get an infinite recursion, and OS X with its limited stack size, will throw a segmentation fault fairly quickly ...

def flat(seqs, ignore={int, long, float, str, unicode}):
    return repeat(seqs, 1) if type(seqs) in ignore or not isinstance(seqs, Iterable) else chain.from_iterable(imap(flat, seqs))

here we are using sets to check for the type so it takes O(1) vs O(number of types) to check whether or not an element should be ignored, though of course any value with derived type of the stated ignored types will fail, this is why its using str, unicode so use it with caution ...

tests:

import random

def test_flat(test_size=2000):
    def increase_depth(value, depth=1):
        for func in xrange(depth):
            value = repeat(value, 1)
        return value

    def random_sub_chaining(nested_values):
        for values in nested_values:
            yield chain((values,), chain.from_iterable(imap(next, repeat(nested_values, random.randint(1, 10)))))

    expected_values = zip(xrange(test_size), imap(str, xrange(test_size)))
    nested_values = random_sub_chaining((increase_depth(value, depth) for depth, value in enumerate(expected_values)))
    assert not any(imap(cmp, chain.from_iterable(expected_values), flat(chain(((),), nested_values, ((),)))))

>>> test_flat()
>>> list(flat([[[1, 2, 3], [4, 5]], 6]))
[1, 2, 3, 4, 5, 6]
>>>  

$ uname -a
Darwin Samys-MacBook-Pro.local 13.3.0 Darwin Kernel Version 13.3.0: Tue Jun  3 21:27:35 PDT 2014; root:xnu-2422.110.17~1/RELEASE_X86_64 x86_64
$ python --version
Python 2.7.5
查看更多
呛了眼睛熬了心
3楼-- · 2018-12-30 22:55

I'm surprised no one has thought of this. Damn recursion I don't get the recursive answers that the advanced people here made. anyway here is my attempt on this. caveat is it's very specific to the OP's use case

import re

L = [[[1, 2, 3], [4, 5]], 6]
flattened_list = re.sub("[\[\]]", "", str(L)).replace(" ", "").split(",")
new_list = list(map(int, flattened_list))
print(new_list)

output:

[1, 2, 3, 4, 5, 6]
查看更多
查无此人
4楼-- · 2018-12-30 22:56

Generator using recursion and duck typing (updated for Python 3):

def flatten(L):
    for item in L:
        try:
            yield from flatten(item)
        except TypeError:
            yield item

list(flatten([[[1, 2, 3], [4, 5]], 6]))
>>>[1, 2, 3, 4, 5, 6]
查看更多
路过你的时光
5楼-- · 2018-12-30 22:56

Here's the compiler.ast.flatten implementation in 2.7.5:

def flatten(seq):
    l = []
    for elt in seq:
        t = type(elt)
        if t is tuple or t is list:
            for elt2 in flatten(elt):
                l.append(elt2)
        else:
            l.append(elt)
    return l

There are better, faster methods (If you've reached here, you have seen them already)

Also note:

Deprecated since version 2.6: The compiler package has been removed in Python 3.

查看更多
墨雨无痕
6楼-- · 2018-12-30 22:57

Here is my functional version of recursive flatten which handles both tuples and lists, and lets you throw in any mix of positional arguments. Returns a generator which produces the entire sequence in order, arg by arg:

flatten = lambda *n: (e for a in n
    for e in (flatten(*a) if isinstance(a, (tuple, list)) else (a,)))

Usage:

l1 = ['a', ['b', ('c', 'd')]]
l2 = [0, 1, (2, 3), [[4, 5, (6, 7, (8,), [9]), 10]], (11,)]
print list(flatten(l1, -2, -1, l2))
['a', 'b', 'c', 'd', -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
查看更多
公子世无双
7楼-- · 2018-12-30 22:57

I didn't go through all the already available answers here, but here is a one liner I came up with, borrowing from lisp's way of first and rest list processing

def flatten(l): return flatten(l[0]) + (flatten(l[1:]) if len(l) > 1 else []) if type(l) is list else [l]

here is one simple and one not-so-simple case -

>>> flatten([1,[2,3],4])
[1, 2, 3, 4]

>>> flatten([1, [2, 3], 4, [5, [6, {'name': 'some_name', 'age':30}, 7]], [8, 9, [10, [11, [12, [13, {'some', 'set'}, 14, [15, 'some_string'], 16], 17, 18], 19], 20], 21, 22, [23, 24], 25], 26, 27, 28, 29, 30])
[1, 2, 3, 4, 5, 6, {'age': 30, 'name': 'some_name'}, 7, 8, 9, 10, 11, 12, 13, set(['set', 'some']), 14, 15, 'some_string', 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]
>>> 
查看更多
登录 后发表回答