Disadvantages of scanf

2018-12-31 06:58发布

I want to know the disadvantages of scanf().

In many sites, I have read that using scanf might cause buffer overflows. What is the reason for this? Are there any other drawbacks with scanf?

9条回答
柔情千种
2楼-- · 2018-12-31 07:34

Most of the answers so far seem to focus on the string buffer overflow issue. In reality, the format specifiers that can be used with scanf functions support explicit field width setting, which limit the maximum size of the input and prevent buffer overflow. This renders the popular accusations of string-buffer overflow dangers present in scanf virtually baseless. Claiming that scanf is somehow analogous to gets in the respect is completely incorrect. There's a major qualitative difference between scanf and gets: scanf does provide the user with string-buffer-overflow-preventing features, while gets doesn't.

One can argue that these scanf features are difficult to use, since the field width has to be embedded into format string (there's no way to pass it through a variadic argument, as it can be done in printf). That is actually true. scanf is indeed rather poorly designed in that regard. But nevertheless any claims that scanf is somehow hopelessly broken with regard to string-buffer-overflow safety are completely bogus and usually made by lazy programmers.

The real problem with scanf has a completely different nature, even though it is also about overflow. When scanf function is used for converting decimal representations of numbers into values of arithmetic types, it provides no protection from arithmetic overflow. If overflow happens, scanf produces undefined behavior. For this reason, the only proper way to perform the conversion in C standard library is functions from strto... family.

So, to summarize the above, the problem with scanf is that it is difficult (albeit possible) to use properly and safely with string buffers. And it is impossible to use safely for arithmetic input. The latter is the real problem. The former is just an inconvenience.

P.S. The above in intended to be about the entire family of scanf functions (including also fscanf and sscanf). With scanf specifically, the obvious issue is that the very idea of using a strictly-formatted function for reading potentially interactive input is rather questionable.

查看更多
人气声优
3楼-- · 2018-12-31 07:36

From the comp.lang.c FAQ: Why does everyone say not to use scanf? What should I use instead?

scanf has a number of problems—see questions 12.17, 12.18a, and 12.19. Also, its %s format has the same problem that gets() has (see question 12.23)—it’s hard to guarantee that the receiving buffer won’t overflow. [footnote]

More generally, scanf is designed for relatively structured, formatted input (its name is in fact derived from “scan formatted”). If you pay attention, it will tell you whether it succeeded or failed, but it can tell you only approximately where it failed, and not at all how or why. You have very little opportunity to do any error recovery.

Yet interactive user input is the least structured input there is. A well-designed user interface will allow for the possibility of the user typing just about anything—not just letters or punctuation when digits were expected, but also more or fewer characters than were expected, or no characters at all (i.e., just the RETURN key), or premature EOF, or anything. It’s nearly impossible to deal gracefully with all of these potential problems when using scanf; it’s far easier to read entire lines (with fgets or the like), then interpret them, either using sscanf or some other techniques. (Functions like strtol, strtok, and atoi are often useful; see also questions 12.16 and 13.6.) If you do use any scanf variant, be sure to check the return value to make sure that the expected number of items were found. Also, if you use %s, be sure to guard against buffer overflow.

Note, by the way, that criticisms of scanf are not necessarily indictments of fscanf and sscanf. scanf reads from stdin, which is usually an interactive keyboard and is therefore the least constrained, leading to the most problems. When a data file has a known format, on the other hand, it may be appropriate to read it with fscanf. It’s perfectly appropriate to parse strings with sscanf (as long as the return value is checked), because it’s so easy to regain control, restart the scan, discard the input if it didn’t match, etc.

Additional links:

References: K&R2 Sec. 7.4 p. 159

查看更多
零度萤火
4楼-- · 2018-12-31 07:40

There is one big problem with scanf-like functions - the lack of any type safety. That is, you can code this:

int i;
scanf("%10s", &i);

Hell, even this is "fine":

scanf("%10s", i);

It's worse than printf-like functions, because scanf expects a pointer, so crashes are more likely.

Sure, there are some format-specifier checkers out there, but, those are not perfect and well, they are not part of the language or the standard library.

查看更多
回忆,回不去的记忆
5楼-- · 2018-12-31 07:42

It is very hard to get scanf to do the thing you want. Sure, you can, but things like scanf("%s", buf); are as dangerous as gets(buf);, as everyone has said.

As an example, what paxdiablo is doing in his function to read can be done with something like:

scanf("%10[^\n]%*[^\n]", buf));
getchar();

The above will read a line, store the first 10 non-newline characters in buf, and then discard everything till (and including) a newline. So, paxdiablo's function could be written using scanf the following way:

#include <stdio.h>

enum read_status {
    OK,
    NO_INPUT,
    TOO_LONG
};

static int get_line(const char *prompt, char *buf, size_t sz)
{
    char fmt[40];
    int i;
    int nscanned;

    printf("%s", prompt);
    fflush(stdout);

    sprintf(fmt, "%%%zu[^\n]%%*[^\n]%%n", sz-1);
    /* read at most sz-1 characters on, discarding the rest */
    i = scanf(fmt, buf, &nscanned);
    if (i > 0) {
        getchar();
        if (nscanned >= sz) {
            return TOO_LONG;
        } else {
            return OK;
        }
    } else {
        return NO_INPUT;
    }
}

int main(void)
{
    char buf[10+1];
    int rc;

    while ((rc = get_line("Enter string> ", buf, sizeof buf)) != NO_INPUT) {
        if (rc == TOO_LONG) {
            printf("Input too long: ");
        }
        printf("->%s<-\n", buf);
    }
    return 0;
}

One of the other problems with scanf is its behavior in case of overflow. For example, when reading an int:

int i;
scanf("%d", &i);

the above cannot be used safely in case of an overflow. Even for the first case, reading a string is much more simpler to do with fgets rather than with scanf.

查看更多
高级女魔头
6楼-- · 2018-12-31 07:46

The advantage of scanf is once you learn how use the tool, as you should always do in C, it has immensely useful usecases. You can learn how to use scanf and friends by reading and understanding the manual. If you can't get through that manual without serious comprehension issues, this would probably indicate that you don't know C very well.


scanf and friends suffered from unfortunate design choices that rendered it difficult (and occasionally impossible) to use correctly without reading the documentation, as other answers have shown. This occurs throughout C, unfortunately, so if I were to advise against using scanf then I would probably advise against using C.

One of the biggest disadvantages seems to be purely the reputation it's earned amongst the uninitiated; as with many useful features of C we should be well informed before we use it. The key is to realise that as with the rest of C, it seems succinct and idiomatic, but that can be subtly misleading. This is pervasive in C; it's easy for beginners to write code that they think makes sense and might even work for them initially, but doesn't make sense and can fail catastrophically.

For example, the uninitiated commonly expect that the %s delegate would cause a line to be read, and while that might seem intuitive it isn't necessarily true. It's more appropriate to describe the field read as a word. Reading the manual is strongly advised for every function.

What would any response to this question be without mentioning its lack of safety and risk of buffer overflows? As we've already covered, C isn't a safe language, and will allow us to cut corners, possibly to apply an optimisation at the expense of correctness or more likely because we're lazy programmers. Thus, when we know the system will never receive a string larger than a fixed number of bytes, we're given the ability to declare an array that size and forego bounds checking. I don't really see this as a down-fall; it's an option. Again, reading the manual is strongly advised and would reveal this option to us.

Lazy programmers aren't the only ones stung by scanf. It's not uncommon to see people trying to read float or double values using %d, for example. They're usually mistaken in believing that the implementation will perform some kind of conversion behind the scenes, which would make sense because similar conversions happen throughout the rest of the language, but that's not the case here. As I said earlier, scanf and friends (and indeed the rest of C) are deceptive; they seem succinct and idiomatic but they aren't.

Inexperienced programmers aren't forced to consider the success of the operation. Suppose the user enters something entirely non-numeric when we've told scanf to read and convert a sequence of decimal digits using %d. The only way we can intercept such erroneous data is to check the return value, and how often do we bother checking the return value?

Much like fgets, when scanf and friends fail to read what they're told to read, the stream will be left in an unusual state; - In the case of fgets, if there isn't sufficient space to store a complete line, then the remainder of the line left unread might be erroneously treated as though it's a new line when it isn't. - In the case of scanf and friends, a conversion failed as documented above, the erroneous data is left unread on the stream and might be erroneously treated as though it's part of a different field.

It's no easier to use scanf and friends than to use fgets. If we check for success by looking for a '\n' when we're using fgets or by inspecting the return value when we use scanf and friends, and we find that we've read an incomplete line using fgets or failed to read a field using scanf, then we're faced with the same reality: We're likely to discard input (usually up until and including the next newline)! Yuuuuuuck!

Unfortunately, scanf both simultaneously makes it hard (non-intuitive) and easy (fewest keystrokes) to discard input in this way. Faced with this reality of discarding user input, some have tried scanf("%*[^\n]%*c");, not realising that the %*[^\n] delegate will fail when it encounters nothing but a newline, and hence the newline will still be left on the stream.

A slight adaptation, by separating the two format delegates and we see some success here: scanf("%*[^\n]"); getchar();. Try doing that with so few keystrokes using some other tool ;)

查看更多
浅入江南
7楼-- · 2018-12-31 07:54

Many answers here discuss the potential overflow issues of using scanf("%s", buf), but the latest POSIX specification more-or-less resolves this issue by providing an m assignment-allocation character that can be used in format specifiers for c, s, and [ formats. This will allow scanf to allocate as much memory as necessary with malloc (so it must be freed later with free).

An example of its use:

char *buf;
scanf("%ms", &buf); // with 'm', scanf expects a pointer to pointer to char.

// use buf

free(buf);

See here. Disadvantages to this approach is that it is a relatively recent addition to the POSIX specification and it is not specified in the C specification at all, so it remains rather unportable for now.

查看更多
登录 后发表回答