I know. RandomForest is not able to handle more than 53 categories. Sadly I have to analyze data and one column has 165 levels. Therefor I want to use RandomForest for a classification.
My problem is I cannot remove this columns since this predictor is really important and known as a valuable predictor.
This predictor has 165 levels and is a factor.
Are there any tips how I can handle this? Since we are talking about film genre I have no idea.
Are there alternative packages for big data? A special workaround? Something like this..
Switching to Python is no option. We have too many R scripts here.
Thanks a lot and all the best
The str(data) looks like this:
'data.frame': 481696 obs. of 18 variables:
$ SENDERNR : int 432 1612 735 721 436 436 1321 721 721 434 ...
$ SENDER : Factor w/ 14 levels "ARD Das Erste",..: 6 3 4 9 12 12 10 9 9 7 ...
$ GEPLANTE_SENDUNG_N: Factor w/ 12563 levels "-- nicht bekannt --",..: 7070 808 5579 9584 4922 4922 12492 1933 9584 4533 ...
$ U_N_PROGRAMMCODE : Factor w/ 14 levels "Bühne/Aufführung",..: 9 4 8 4 8 8 12 8 4 2 ...
$ U_N_PROGRAMMSPARTE: Factor w/ 6 levels "Anderes","Fiction",..: 5 3 2 3 2 2 5 2 3 3 ...
$ U_N_SENDUNGSFORMAT: Factor w/ 29 levels "Bühne / Aufführung",..: 20 9 19 4 19 19 24 19 4 16 ...
$ U_N_GENRE : Factor w/ 163 levels "Action / Abenteuer",..: 119 147 115 4 158 158 163 61 4 84 ...
$ U_N_PRODUKTIONSART: Factor w/ 5 levels "Eigen-, Co-, Auftragsproduktion, Cofinanzierung",..: 1 1 3 1 3 3 1 3 1 1 ...
$ U_N_HERKUNFTSLAND : Factor w/ 25 levels "afrikanische Länder",..: 16 16 25 16 15 15 16 25 16 16 ...
$ GEPLANTE_SENDUNG_V: Factor w/ 12191 levels "-- nicht bekannt --",..: 6932 800 5470 9382 1518 9318 12119 1829 9382 4432 ...
$ U_V_PROGRAMMCODE : Factor w/ 13 levels "Bühne/Aufführung",..: 9 4 8 4 8 8 12 8 4 2 ...
$ U_V_PROGRAMMSPARTE: Factor w/ 6 levels "Anderes","Fiction",..: 5 3 2 3 2 2 5 2 3 3 ...
$ U_V_SENDUNGSFORMAT: Factor w/ 28 levels "Bühne / Aufführung",..: 20 9 19 4 19 19 24 19 4 16 ...
$ U_V_GENRE : Factor w/ 165 levels "Action / Abenteuer",..: 119 148 115 4 160 19 165 61 4 84 ...
$ U_V_PRODUKTIONSART: Factor w/ 5 levels "Eigen-, Co-, Auftragsproduktion, Cofinanzierung",..: 1 1 3 1 3 3 1 3 1 1 ...
$ U_V_HERKUNFTSLAND : Factor w/ 25 levels "afrikanische Länder",..: 16 16 25 16 15 9 16 25 16 16 ...
$ ABGELEHNT : int 0 0 0 0 0 0 0 0 0 0 ...
$ AKZEPTIERT : Factor w/ 2 levels "0","1": 2 1 2 2 2 2 1 2 2 2 ...
Having faced the same issue, here are some tips I can list.
gbm
package. You can handle up to 1024 categorical levels. If your predictor has quite discriminant parameters, you should also consider probabilistic approaches such asnaiveBayes
.matrix.model
. You can then perform a random forest over this matrix.EDIT TO ADD MODEL.MATRIX EXAMPLE
As mentioned, here is an example on how to use
model.matrix
to transform your column into dummy variables.Use the caret package :