Not sure why I'm having a difficult time with this, it seems so simple considering it's fairly easy to do in R or pandas. I wanted to avoid using pandas though since I'm dealing with a lot of data, and I believe toPandas()
loads all the data into the driver’s memory in pyspark.
I have 2 dataframes: df1
and df2
. I want to filter df1
(remove all rows) where df1.userid = df2.userid
AND df1.group = df2.group
. I wasn't sure if I should use filter()
, join()
, or sql
For example:
df1:
+------+----------+--------------------+
|userid| group | all_picks |
+------+----------+--------------------+
| 348| 2|[225, 2235, 2225] |
| 567| 1|[1110, 1150] |
| 595| 1|[1150, 1150, 1150] |
| 580| 2|[2240, 2225] |
| 448| 1|[1130] |
+------+----------+--------------------+
df2:
+------+----------+---------+
|userid| group | pick |
+------+----------+---------+
| 348| 2| 2270|
| 595| 1| 2125|
+------+----------+---------+
Result I want:
+------+----------+--------------------+
|userid| group | all_picks |
+------+----------+--------------------+
| 567| 1|[1110, 1150] |
| 580| 2|[2240, 2225] |
| 448| 1|[1130] |
+------+----------+--------------------+
EDIT: I've tried many join() and filter() functions, I believe the closest I got was:
cond = [df1.userid == df2.userid, df2.group == df2.group]
df1.join(df2, cond, 'left_outer').select(df1.userid, df1.group, df1.all_picks) # Result has 7 rows
I tried a bunch of different join types, and I also tried different cond
values:
cond = ((df1.userid == df2.userid) & (df2.group == df2.group)) # result has 7 rows
cond = ((df1.userid != df2.userid) & (df2.group != df2.group)) # result has 2 rows
However, it seems like the joins are adding additional rows, rather than deleting.
I'm using python 2.7
and spark 2.1.0
Left anti join is what you're looking for:
but the same thing can be done with left outer join: