I am running Spark on my local machine (16G,8 cpu cores). I was trying to train linear regression model on dataset of size 300MB. I checked the cpu statistics and also the programs running, it just executes one thread. The documentation says they have implemented distributed version of SGD. http://spark.apache.org/docs/latest/mllib-linear-methods.html#implementation-developer
from pyspark.mllib.regression import LabeledPoint, LinearRegressionWithSGD, LinearRegressionModel
from pyspark import SparkContext
def parsePoint(line):
values = [float(x) for x in line.replace(',', ' ').split(' ')]
return LabeledPoint(values[0], values[1:])
sc = SparkContext("local", "Linear Reg Simple")
data = sc.textFile("/home/guptap/Dropbox/spark_opt/test.txt")
data.cache()
parsedData = data.map(parsePoint)
model = LinearRegressionWithSGD.train(parsedData)
valuesAndPreds = parsedData.map(lambda p: (p.label,model.predict(p.features)))
MSE = valuesAndPreds.map(lambda (v, p): (v - p)**2).reduce(lambda x, y: x + y) / valuesAndPreds.count()
print("Mean Squared Error = " + str(MSE))
model.save(sc, "myModelPath")
sameModel = LinearRegressionModel.load(sc, "myModelPath")
I think what you want to do is explicitly state the number of cores to use with the local context. As you can see from the comments here,
"local"
(which is what you're doing) instantiates a context on one thread whereas"local[4]"
will run with 4 cores. I believe you can also use"local[*]"
to run on all cores on your system.