What is a “cache-friendly” code?

2018-12-31 07:09发布

What is the difference between "cache unfriendly code" and the "cache friendly" code?

How can I make sure I write cache-efficient code?

9条回答
墨雨无痕
2楼-- · 2018-12-31 07:35

In addition to @Marc Claesen's answer, I think that an instructive classic example of cache-unfriendly code is code that scans a C bidimensional array (e.g. a bitmap image) column-wise instead of row-wise.

Elements that are adjacent in a row are also adjacent in memory, thus accessing them in sequence means accessing them in ascending memory order; this is cache-friendly, since the cache tends to prefetch contiguous blocks of memory.

Instead, accessing such elements column-wise is cache-unfriendly, since elements on the same column are distant in memory from each other (in particular, their distance is equal to the size of the row), so when you use this access pattern you are jumping around in memory, potentially wasting the effort of the cache of retrieving the elements nearby in memory.

And all that it takes to ruin the performance is to go from

// Cache-friendly version - processes pixels which are adjacent in memory
for(unsigned int y=0; y<height; ++y)
{
    for(unsigned int x=0; x<width; ++x)
    {
        ... image[y][x] ...
    }
}

to

// Cache-unfriendly version - jumps around in memory for no good reason
for(unsigned int x=0; x<width; ++x)
{
    for(unsigned int y=0; y<height; ++y)
    {
        ... image[y][x] ...
    }
}

This effect can be quite dramatic (several order of magnitudes in speed) in systems with small caches and/or working with big arrays (e.g. 10+ megapixels 24 bpp images on current machines); for this reason, if you have to do many vertical scans, often it's better to rotate the image of 90 degrees first and perform the various analysis later, limiting the cache-unfriendly code just to the rotation.

查看更多
萌妹纸的霸气范
3楼-- · 2018-12-31 07:39

Processors today work with many levels of cascading memory areas. So the CPU will have a bunch of memory that is on the CPU chip itself. It has very fast access to this memory. There are different levels of cache each one slower access ( and larger ) than the next, until you get to system memory which is not on the CPU and is relatively much slower to access.

Logically, to the CPU's instruction set you just refer to memory addresses in a giant virtual address space. When you access a single memory address the CPU will go fetch it. in the old days it would fetch just that single address. But today the CPU will fetch a bunch of memory around the bit you asked for, and copy it into the cache. It assumes that if you asked for a particular address that is is highly likely that you are going to ask for an address nearby very soon. For example if you were copying a buffer you would read and write from consecutive addresses - one right after the other.

So today when you fetch an address it checks the first level of cache to see if it already read that address into cache, if it doesn't find it, then this is a cache miss and it has to go out to the next level of cache to find it, until it eventually has to go out into main memory.

Cache friendly code tries to keep accesses close together in memory so that you minimize cache misses.

So an example would be imagine you wanted to copy a giant 2 dimensional table. It is organized with reach row in consecutive in memory, and one row follow the next right after.

If you copied the elements one row at a time from left to right - that would be cache friendly. If you decided to copy the table one column at a time, you would copy the exact same amount of memory - but it would be cache unfriendly.

查看更多
几人难应
4楼-- · 2018-12-31 07:39

As @Marc Claesen mentioned that one of the ways to write cache friendly code is to exploit the structure in which our data is stored. In addition to that another way to write cache friendly code is: change the way our data is stored; then write new code to access the data stored in this new structure.

This makes sense in the case of how database systems linearize the tuples of a table and store them. There are two basic ways to store the tuples of a table i.e. row store and column store. In row store as the name suggests the tuples are stored row wise. Lets suppose a table named Product being stored has 3 attributes i.e. int32_t key, char name[56] and int32_t price, so the total size of a tuple is 64 bytes.

We can simulate a very basic row store query execution in main memory by creating an array of Product structs with size N, where N is the number of rows in table. Such memory layout is also called array of structs. So the struct for Product can be like:

struct Product
{
   int32_t key;
   char name[56];
   int32_t price'
}

/* create an array of structs */
Product* table = new Product[N];
/* now load this array of structs, from a file etc. */

Similarly we can simulate a very basic column store query execution in main memory by creating an 3 arrays of size N, one array for each attribute of the Product table. Such memory layout is also called struct of arrays. So the 3 arrays for each attribute of Product can be like:

/* create separate arrays for each attribute */
int32_t* key = new int32_t[N];
char* name = new char[56*N];
int32_t* price = new int32_t[N];
/* now load these arrays, from a file etc. */

Now after loading both the array of structs (Row Layout) and the 3 separate arrays (Column Layout), we have row store and column store on our table Product present in our memory.

Now we move on to the cache friendly code part. Suppose that the workload on our table is such that we have an aggregation query on the price attribute. Such as

SELECT SUM(price)
FROM PRODUCT

For the row store we can convert the above SQL query into

int sum = 0;
for (int i=0; i<N; i++)
   sum = sum + table[i].price;

For the column store we can convert the above SQL query into

int sum = 0;
for (int i=0; i<N; i++)
   sum = sum + price[i];

The code for the column store would be faster than the code for the row layout in this query as it requires only a subset of attributes and in column layout we are doing just that i.e. only accessing the price column.

Suppose that the cache line size is 64 bytes.

In the case of row layout when a cache line is read, the price value of only 1(cacheline_size/product_struct_size = 64/64 = 1) tuple is read, because our struct size of 64 bytes and it fills our whole cache line, so for every tuple a cache miss occurs in case of a row layout.

In the case of column layout when a cache line is read, the price value of 16(cacheline_size/price_int_size = 64/4 = 16) tuples is read, because 16 contiguous price values stored in memory are brought into the cache, so for every sixteenth tuple a cache miss ocurs in case of column layout.

So the column layout will be faster in the case of given query, and is faster in such aggregation queries on a subset of columns of the table. You can try out such experiment for yourself using the data from TPC-H benchmark, and compare the run times for both the layouts. The wikipedia article on column oriented database systems is also good.

So in database systems, if the query workload is known beforehand, we can store our data in layouts which will suit the queries in workload and access data from these layouts. In the case of above example we created a column layout and changed our code to compute sum so that it became cache friendly.

查看更多
登录 后发表回答