Controlled random number/dataset generation in MAT

2019-03-01 06:32发布

Say, I have a cube of dimensions 1x1x1 spanning between coordinates (0,0,0) and (1,1,1). I want to generate a random set of points (assume 10 points) within this cube which are somewhat uniformly distributed (i.e. within certain minimum and maximum distance from each other and also not too close to the boundaries). How do I go about this without using loops? If this is not possible using vector/matrix operations then the solution with loops will also do.

Let me provide some more background details about my problem (This will help in terms of what I exactly need and why). I want to integrate a function, F(x,y,z), inside a polyhedron. I want to do it numerically as follows:

$F(x,y,z) = \sum_{i} F(x_i,y_i,z_i) \times V_i(x_i,y_i,z_i)$

Here, $F(x_i,y_i,z_i)$ is the value of function at point $(x_i,y_i,z_i)$ and $V_i$ is the weight. So to calculate the integral accurately, I need to identify set of random points which are not too close to each other or not too far from each other (Sorry but I myself don't know what this range is. I will be able to figure this out using parametric study only after I have a working code). Also, I need to do this for a 3D mesh which has multiple polyhedrons, hence I want to avoid loops to speed things out.

标签: matlab random
2条回答
小情绪 Triste *
2楼-- · 2019-03-01 06:38

Use i=rand(3,10) where each column corresponds to one point, and each row corresponds to the coordinate in one axis (x,y,z)

查看更多
Evening l夕情丶
3楼-- · 2019-03-01 06:41

Check out this nice random vectors generator with fixed sum FEX file. The code "generates m random n-element column vectors of values, [x1;x2;...;xn], each with a fixed sum, s, and subject to a restriction a<=xi<=b. The vectors are randomly and uniformly distributed in the n-1 dimensional space of solutions. This is accomplished by decomposing that space into a number of different types of simplexes (the many-dimensional generalizations of line segments, triangles, and tetrahedra.) The 'rand' function is used to distribute vectors within each simplex uniformly, and further calls on 'rand' serve to select different types of simplexes with probabilities proportional to their respective n-1 dimensional volumes. This algorithm does not perform any rejection of solutions - all are generated so as to already fit within the prescribed hypercube."

查看更多
登录 后发表回答