In order to find leap years, why must the year be indivisible by 100 and divisible by 400? I understand why it must be divisible by 4. Please explain the algorithm.
相关问题
- Finding k smallest elements in a min heap - worst-
- binary search tree path list
- High cost encryption but less cost decryption
- How to get a fixed number of evenly spaced points
- Space complexity of validation of a binary search
相关文章
- What are the problems associated to Best First Sea
- Coin change DP solution to keep track of coins
- Algorithm for partially filling a polygonal mesh
- Robust polygon normal calculation
- Algorithm for maximizing coverage of rectangular a
- How to measure complexity of a string?
- Select unique/deduplication in SSE/AVX
- How to smooth the blocks of a 3D voxel world?
I'm sure Wikipedia can explain it better than I can, but it is basically to do with the fact that if you added an extra day every four years we'd get ahead of the sun as its time to orbit the sun is less than 365.25 days so we compensate for this by not adding leap days on years that are not divisible by 400 eg 1900.
Hope that helps
Here comes a rather obsqure idea. When every year dividable with 100 gets 365 days, what shall be done at this time? In the far future, when even years dividable with 400 only can get 365 days.
Then there is a possibility or reason to make corrections in years dividable with 80. Normal years will have 365 day and those dividable with 400 can get 366 days. Or is this a loose-loose situation.
Return true if the input year is a leap year
Basic modern day code:
Todays rule started 1582 AD Julian calendar rule with every 4th year started 46BC but is not coherent before 10 AD as declared by Cesar. They did however add some leap years every 3rd year now and then in the years before: Leap years were therefore 45 BC, 42 BC, 39 BC, 36 BC, 33 BC, 30 BC, 27 BC, 24 BC, 21 BC, 18 BC, 15 BC, 12 BC, 9 BC, 8 AD, 12 AD Before year 45BC leap year was not added. http://www.wwu.edu/depts/skywise/leapyear.html
The year 0 do not exist as it is ...2BC 1BC 1AD 2AD... for some calculation this can be an issue.
Leap years are arbitrary, and the system used to describe them is a man made construct. There is no why.
What I mean is there could have been a leap year every 28 years and we would have an extra week in those leap years ... but the powers that be decided to make it a day every 4 years to catch up.
It also has to do with the earth taking a pesky 365.25 days to go round the sun etc. Of course it isn't really 365.25 is it slightly less (365.242222...), so to correct for this discrepancy they decided drop the leap years that are divisible by 100.