In order to find leap years, why must the year be indivisible by 100 and divisible by 400? I understand why it must be divisible by 4. Please explain the algorithm.
相关问题
- Finding k smallest elements in a min heap - worst-
- binary search tree path list
- High cost encryption but less cost decryption
- How to get a fixed number of evenly spaced points
- Space complexity of validation of a binary search
相关文章
- What are the problems associated to Best First Sea
- Coin change DP solution to keep track of coins
- Algorithm for partially filling a polygonal mesh
- Robust polygon normal calculation
- Algorithm for maximizing coverage of rectangular a
- How to measure complexity of a string?
- Select unique/deduplication in SSE/AVX
- How to smooth the blocks of a 3D voxel world?
I found this problem in the book "Illustrated Guide to Python 3". It was in a very early chapter that only discussed the math operations, no loops, no comparisons, no conditionals. How can you tell if a given year is a leap year?
Below is what I came up with:
In general terms the algorithm for calculating a leap year is as follows...
A year will be a leap year if it is divisible by 4 but not by 100. If a year is divisible by 4 and by 100, it is not a leap year unless it is also divisible by 400.
Thus years such as 1996, 1992, 1988 and so on are leap years because they are divisible by 4 but not by 100. For century years, the 400 rule is important. Thus, century years 1900, 1800 and 1700 while all still divisible by 4 are also exactly divisible by 100. As they are not further divisible by 400, they are not leap years
If you're interested in the reasons for these rules, it's because the time it takes the earth to make exactly one orbit around the sun is a long imprecise decimal value. It's not exactly 365.25. It's slightly less than 365.25, so every 100 years, one leap day must be eliminated (365.25 - 0.01 = 365.24). But that's not exactly correct either. The value is slightly larger than 365.24. So only 3 out of 4 times will the 100 year rule apply (or in other words, add back in 1 day every 400 years; 365.25 - 0.01 + 0.0025 = 365.2425).
PHP:
In
Java
Below code calculates leap year count between two given year. Determine starting and ending point of the loop.Then if parameter modulo 4 is equal 0 and parameter modulo 100 not equal 0 or parameter modulo 400 equal zero then it is leap year and increase counter.
Here is a simple implementation of the wikipedia algorithm, using the javascript ternary operator: