I have an array of coordinates that reflect known positions on an image. Let's call this the template image. It has a unique barcode and orientation markers (which are also in the coordinate array).
The image is printed, scanned and fed back into my application to be detected. During printing and scanning, the image could be transformed in three ways; translation, rotation and scale.
Assuming that I can find the orientation markers on the distorted image, how can I use matrix transformation to get the relative positions of the remaining coordinates?
I posted this question on SO before but made it too complicated to understand what I wanted.
EDIT
namespace MatrixTest
{
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Collections.Generic;
public static class Program
{
public static void Main ()
{
Template template = new Template(); // Original template image.
Document document = new Document(); // Printed and scanned distorted image.
template.CreateTemplateImage();
// The template image is printed and scanned. This method generates an example scan or this question.
document.CreateDistortedImageFromTemplateImage();
// Stuck here.
document.Transform();
// Draw transformed points on the image to verify that transformation is successful.
document.DrawPoints();
System.Diagnostics.Process.Start(new System.IO.FileInfo(System.Reflection.Assembly.GetExecutingAssembly().Location).Directory.FullName);
}
}
public class Page
{
public Bitmap Image { get; set; }
public Point[] Markers = new Point[3]; // Orientation markers: 1=TopLeft, 2=TopRight, 3=BottomRight.
public Point[] Points = new Point[100]; // Coordinates to transform in the TemplateScanned derived class!
}
// This class represents the originalk template image.
public class Template: Page
{
public Template ()
{
this.Image = new Bitmap(300, 400);
// Known dimentions for marker rectangles.
this.Markers[0] = new Point(10, 10);
this.Markers[1] = new Point(this.Image.Width - 20 - 10, 10);
this.Markers[2] = new Point(this.Image.Width - 20 - 10, this.Image.Height - 20 - 10);
// Known points of interest. Consider them hardcoded.
int index = 0;
for (int y = 0; y < 10; y++)
for (int x = 0; x < 10; x++)
this.Points[index++] = new Point((this.Image.Width / 10) + (x * 20), (this.Image.Height / 10) + (y * 20));
}
public void CreateTemplateImage ()
{
using (Graphics graphics = Graphics.FromImage(this.Image))
{
graphics.Clear(Color.White);
for (int i = 0; i < this.Markers.Length; i++)
graphics.FillRectangle(Brushes.Black, this.Markers[i].X, this.Markers[i].Y, 20, 20);
for (int i = 0; i < this.Points.Length; i++)
graphics.DrawRectangle(Pens.Red, this.Points[i].X, this.Points[i].Y, 5, 5);
}
this.Image.Save("Document Original.png");
}
}
// This class represents the scanned image.
public class Document: Page
{
public struct StructTransformation
{
public float AngleOfRotation;
public SizeF ScaleRatio;
public SizeF TranslationOffset;
}
private Template Template = new Template();
private StructTransformation Transformation = new StructTransformation();
public Document ()
{
this.Template = new Template();
this.Transformation = new StructTransformation { AngleOfRotation = 5f, ScaleRatio = new SizeF(.8f, .7f), TranslationOffset = new SizeF(100f, 30f) };
this.Template.CreateTemplateImage();
// Copy points from template.
for (int i = 0; i < this.Template.Markers.Length; i++)
this.Markers[i] = this.Template.Markers[i];
for (int i = 0; i < this.Points.Length; i++)
this.Points[i] = this.Template.Points[i];
}
// Just distorts the original template image as if it had been read from a scanner.
public void CreateDistortedImageFromTemplateImage ()
{
// Distort coordinates.
Matrix matrix = new Matrix();
matrix.Rotate(this.Transformation.AngleOfRotation);
matrix.Scale(this.Transformation.ScaleRatio.Width, this.Transformation.ScaleRatio.Height);
matrix.Translate(this.Transformation.TranslationOffset.Width, this.Transformation.TranslationOffset.Height);
matrix.TransformPoints(this.Markers);
matrix.TransformPoints(this.Points);
// Distort and save image for visual reference.
this.Image = new Bitmap(this.Template.Image.Width, this.Template.Image.Height);
using (Graphics graphics = Graphics.FromImage(this.Image))
{
graphics.Clear(Color.White);
graphics.RotateTransform(this.Transformation.AngleOfRotation);
graphics.ScaleTransform(this.Transformation.ScaleRatio.Width, this.Transformation.ScaleRatio.Height);
graphics.TranslateTransform(this.Transformation.TranslationOffset.Width, this.Transformation.TranslationOffset.Height);
graphics.DrawImage(this.Template.Image, 0, 0);
}
this.Image.Save("Document Scanned.png");
}
public void Transform ()
{
// The rectangles of the ScannedDcoument are not known at this time. They would obviously be relative to the three orientation markers.
// I can't figure out how to use the following code properly i.e. using Matrix to apply all three transformations.
Matrix matrix = new Matrix();
matrix.Rotate(-this.Transformation.AngleOfRotation);
matrix.Scale(1f/this.Transformation.ScaleRatio.Width, 1f/this.Transformation.ScaleRatio.Height);
matrix.Translate(-this.Transformation.TranslationOffset.Width, -this.Transformation.TranslationOffset.Height);
matrix.TransformPoints(this.Markers);
matrix.TransformPoints(this.Points);
}
public void DrawPoints ()
{
using (Graphics graphics = Graphics.FromImage(this.Image))
{
graphics.Clear(Color.White);
for (int i = 0; i < this.Markers.Length; i++)
graphics.FillRectangle(Brushes.Blue, this.Markers[i].X, this.Markers[i].Y, 20, 20);
for (int i = 0; i < this.Points.Length; i++)
graphics.DrawRectangle(Pens.Purple, this.Points[i].X, this.Points[i].Y, 5, 5);
}
this.Image.Save("Document Fixed.png");
}
}
}
I'm assuming you want to transform the image to the unit square ( (0, 0) - (1.0, 1.0)) You need three points, one is the origin, the other will be transformed to the x-axis (1.0, 0) and the other to the y-axis (0, 1.0).
In the original coordinate system:
First we will shift the origin to (0,0) in homogeneous coordinates the transform matrix will be
The transform from the new space to the old one is represented by the following matrix:
Because you want the inverse transformation, from old space to the new one, we need the invert this matrix: Let's shorten (RX1*RY2-RX2*RY1) as D
Now you can multiply both matrices first you do the translation and then use the second matrix to transform the basis.