Difference between Hashing a Password and Encrypti

2018-12-31 06:45发布

The current top-voted to this question states:

Another one that's not so much a security issue, although it is security-related, is complete and abject failure to grok the difference between hashing a password and encrypting it. Most commonly found in code where the programmer is trying to provide unsafe "Remind me of my password" functionality.

What exactly is this difference? I was always under the impression that hashing was a form of encryption. What is the unsafe functionality the poster is referring to?

9条回答
荒废的爱情
2楼-- · 2018-12-31 06:52

Hashing is a one way function (well, a mapping). It's irreversible, you apply the secure hash algorithm and you cannot get the original string back. The most you can do is to generate what's called "a collision", that is, finding a different string that provides the same hash. Cryptographically secure hash algorithms are designed to prevent the occurrence of collisions. You can attack a secure hash by the use of a rainbow table, which you can counteract by applying a salt to the hash before storing it.

Encrypting is a proper (two way) function. It's reversible, you can decrypt the mangled string to get original string if you have the key.

The unsafe functionality it's referring to is that if you encrypt the passwords, your application has the key stored somewhere and an attacker who gets access to your database (and/or code) can get the original passwords by getting both the key and the encrypted text, whereas with a hash it's impossible.

People usually say that if a cracker owns your database or your code he doesn't need a password, thus the difference is moot. This is naïve, because you still have the duty to protect your users' passwords, mainly because most of them do use the same password over and over again, exposing them to a greater risk by leaking their passwords.

查看更多
余生无你
3楼-- · 2018-12-31 06:52

Ideally you should do both.

First Hash the pass password for the one way security. Use a salt for extra security.

Then encrypt the hash to defend against dictionary attacks if your database of password hashes is compromised.

查看更多
荒废的爱情
4楼-- · 2018-12-31 07:00

Hashing algorithms are usually cryptographic in nature, but the principal difference is that encryption is reversible through decryption, and hashing is not.

An encryption function typically takes input and produces encrypted output that is the same, or slightly larger size.

A hashing function takes input and produces a typically smaller output, typically of a fixed size as well.

While it isn't possible to take a hashed result and "dehash" it to get back the original input, you can typically brute-force your way to something that produces the same hash.

In other words, if a authentication scheme takes a password, hashes it, and compares it to a hashed version of the requires password, it might not be required that you actually know the original password, only its hash, and you can brute-force your way to something that will match, even if it's a different password.

Hashing functions are typically created to minimize the chance of collisions and make it hard to just calculate something that will produce the same hash as something else.

查看更多
时光乱了年华
5楼-- · 2018-12-31 07:01

Here's one reason you may want to use one over the other - password retrieval.

If you only store a hash of a user's password, you can't offer a 'forgotten password' feature.

查看更多
柔情千种
6楼-- · 2018-12-31 07:06

As correct as the other answers may be, in the context that the quote was in, hashing is a tool that may be used in securing information, encryption is a process that takes information and makes it very difficult for unauthorized people to read/use.

查看更多
ら面具成の殇う
7楼-- · 2018-12-31 07:11

Hashing is a one-way function, meaning that once you hash a password it is very difficult to get the original password back from the hash. Encryption is a two-way function, where it's much easier to get the original text back from the encrypted text.

Plain hashing is easily defeated using a dictionary attack, where an attacker just pre-hashes every word in a dictionary (or every combination of characters up to a certain length), then uses this new dictionary to look up hashed passwords. Using a unique random salt for each hashed password stored makes it much more difficult for an attacker to use this method. They would basically need to create a new unique dictionary for every salt value that you use, slowing down their attack terribly.

It's unsafe to store passwords using an encryption algorithm because if it's easier for the user or the administrator to get the original password back from the encrypted text, it's also easier for an attacker to do the same.

查看更多
登录 后发表回答