I need to solve a minimization problem with Matlab and I'm wondering which is the easiest solution. All the potential solutions that I've been thinking in require lot of programming effort.
Suppose that I have a lat/long coordinate point (A,B), what I need is to search for the nearest point to this one in a map of lat/lon coordinates.
In particular, the latitude and longitude arrays are two matrices of 2030x1354 elements (1km distance) and the idea is to find the unique indexes in those matrices that minimize the distance to the coordinates (A,B), i.e., to find the closest values to the given coordinates (A,B).
Any help would be very appreciated.
Thanks!
Let
Lat
andLong
denote latitude and longitude matrices, thenI
andJ
contain the indices inA
andB
that correspond to nearest point. Note that if there are multiple answers,I
andJ
will not be scalar values, but vectors.This is always a fun one :)
First off: Mohsen Nosratinia's answer is OK, as long as
For a given latitude, -180° and +180° longitude are actually the same point, so simply looking at differences between angles is not sufficient. This will be more of a problem in the polar regions, since large longitude differences there will have less of an impact on the actual distance.
Spherical coordinates are very useful and practical for purposes of navigation, mapping, and that sort of thing. For spatial computations however, like the on-surface distances you are trying to compute, spherical coordinates are actually pretty cumbersome to work with.
Although it is possible to do such calculations using the angles directly, I personally don't consider it very practical: you often have to have a strong background in spherical trigonometry, and considerable experience to know its many pitfalls -- very often there are instabilities or "special points" you need to work around (the poles, for example), quadrant ambiguities you need to consider because of trig functions you've introduced, etc.
I've learned to do all this in university, but I also learned that the spherical trig approach often introduces complexity that mathematically speaking is not strictly required, in other words, the spherical trig is not the simplest representation of the underlying problem.
For example, your distance problem is pretty trivial if you convert your latitudes and longitudes to 3D Cartesian
X,Y,Z
coordinates, and then find the distances through the simple formulawhere a and b are two such Cartesian vectors on the sphere. Note that |a| = |b| =
R
, withR = 6371
the radius of Earth.In MATLAB code:
If you insist on skipping the conversion to Cartesian and use lat/lon directly, you'll have to use the Haversine formula, as outlined on this website for example, which is also the method used by
distance()
from the mapping toolbox.Now, all of this is valid for the whole Earth, provided you find the smooth spherical Earth accurate enough an approximation. If you want to include the Earth's oblateness or some higher order shape model (or God forbid, distances including terrain), you need to do far more complicated stuff. But I don't think that is your goal here :)
PS - I wouldn't be surprised that if you would write everything out that I did, you'll probably re-discover the Haversine formula. I just prefer to be able to calculate something as simple as distances along the sphere from first principles alone, rather than from some black box formula you had implanted in your head sometime long ago :)