So, while I am pretty happy to find a lot of answers on Stack Overflow I decided it is time to ask a question myself.
I am trying to use a root finding algorithm with derivatives. In accordance with the GSL I have to define the function and its derivative in advance. But I wonder if this can be done more elegant with a wrapper.
Some time ago I found a very handy template (GSL C++ wrapper) which works fine for one function to e.g. integrate and I make heavy usage of it.
Now I am wondering if this approach can be extended to provide two functions for the GSL, namely the function itself and its derivative.
Edit: Solution
template <typename F, typename G>
class gsl_root_deriv : public gsl_function_fdf
{
private:
const F& _f;
const G& _df;
static double invoke_f(double x, void* params){
return static_cast<gsl_root_deriv*>(params) -> _f(x);
}
static double invoke_df(double x, void* params){
return static_cast<gsl_root_deriv*>(params) -> _df(x);
}
static void invoke_fdf(double x, void* params, double* f, double* df){
(*f) = static_cast<gsl_root_deriv*>(params) -> _f(x);
(*df) = static_cast<gsl_root_deriv*>(params) -> _df(x);
}
public:
gsl_root_deriv(const F& f_init, const G& df_init)
: _f(f_init), _df(df_init)
{
f = &gsl_root_deriv::invoke_f;
df = &gsl_root_deriv::invoke_df;
fdf = &gsl_root_deriv::invoke_fdf;
params = this;
}
};
And a minimal example which resembles the example from the GSL:
#include <iostream>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_roots.h>
#include <memory>
#include "gsl_root_deriv.h"
int main()
{
auto f = [](double x) -> double { return 0.25 * x*x - 1.0; };
auto df = [](double x) -> double { return 0.5 * x; };
gsl_root_deriv<decltype(f),decltype(df)> Fp(f,df);
int status(0), iter(0), max_iter(100);
const gsl_root_fdfsolver_type* T( gsl_root_fdfsolver_newton);
std::unique_ptr<gsl_root_fdfsolver,void(*)(gsl_root_fdfsolver*)>
s(gsl_root_fdfsolver_alloc(T),gsl_root_fdfsolver_free);
double x_0(0.0), x(5.0);
gsl_root_fdfsolver_set( s.get(), &Fp, x );
do
{
iter++;
std::cout << "Iteration " << iter << std::endl;
status = gsl_root_fdfsolver_iterate( s.get() );
x_0 = x;
x = gsl_root_fdfsolver_root( s.get() );
status = gsl_root_test_delta( x, x_0, 0.0, 1.0e-3 );
} while( status == GSL_CONTINUE && iter < max_iter );
std::cout << "Converged to root " << x << std::endl;
return 0;
}
Kind regards,
-- Klaus
You will need to do some modifications
Gsl fdf struct is the following
If you understood what the wrapper actually does, then you will see that generalization is quite straightforward
The template version.
EDIT2: After fixing 2 small problems, this example works