I'm would like to solve Chinese Postman problem in a graph where an eulerian cycle does not exist. So basically I'm looking for a path in a graph which visits every edge exactly once, and starts and ends at the same node. A graph will have an euler cycle if and only if every node has same number of edges entering into and going out of it. Obviously my graph doesn't .
I found out that Eulerization (making a graph Eulerian) could solve my question LINK. Can anyone suggest a script to add duplicate edges to a graph so that the resulting graph has no vertices of odd degree (and thus does have an Euler Circuit)?
Here is my example:
require(igraph)
require(graph)
require(eulerian)
require(GA)
g1 <- graph(c(1,2, 1,3, 2,4, 2,5, 1,5, 3,5, 4,7, 5,7, 5,8, 3,6, 6,8, 6,9, 9,11, 8,11, 8,10, 8,12, 7,10, 10,12, 11,12), directed = FALSE)
mat <- get.adjacency(g1)
mat <- as.matrix(mat)
rownames(mat) <- LETTERS[1:12]
colnames(mat) <- LETTERS[1:12]
g2 <- as(graphAM(adjMat=mat), "graphNEL")
hasEulerianCycle(g2)
Fun problem.
The graph you sugest in the code above, can be made to have duplicates that enable a eulerian cycle to be created. The function I provide below tries to add the minimum amount of duplicate edges, but also readily breaks the graph structure by adding new links if it has to.
You can run:
Check what the function did to your graph with:
Bare in mind that:
g1
graph can form an eulerian cycle. Imagine for example my function looping the vertices of the graph backwards instead.See also this excellent answer on probability calculation:
Here's my function in a full script that you can source out-of-the-box: