perspective Image Stitching

2019-02-21 01:17发布

I found very useful example from images stitching but my problem was those type of images here is an exemple First Image

and here is an other image Second Image

when i use opencv stitcher the reult imaages is getting smaller like this one Small Result

is there any method to apply a transform into the input images so they will be like this one enter image description here

here is the code

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include<opencv2/opencv.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/nonfree/nonfree.hpp>
#include <opencv2/stitching/stitcher.hpp>
#include<vector>
using namespace cv;
using namespace std;
cv::vector<cv::Mat> ImagesList;
string result_name ="/TopViewsHorizantale/1.bmp";
int main()
{
      // Load the images

 Mat image1= imread("current_00000.bmp" );
 Mat image2= imread("current_00001.bmp" );
 cv::resize(image1, image1, image2.size());
 Mat gray_image1;
 Mat gray_image2;
 Mat Matrix = Mat(3,3,CV_32FC1);

 // Convert to Grayscale
 cvtColor( image1, gray_image1, CV_RGB2GRAY );
 cvtColor( image2, gray_image2, CV_RGB2GRAY );
 namedWindow("first image",WINDOW_AUTOSIZE);
 namedWindow("second image",WINDOW_AUTOSIZE);
 imshow("first image",image2);
 imshow("second image",image1);

if( !gray_image1.data || !gray_image2.data )
 { std::cout<< " --(!) Error reading images " << std::endl; return -1; }

//-- Step 1: Detect the keypoints using SURF Detector
 int minHessian = 400;

SurfFeatureDetector detector( minHessian );

std::vector< KeyPoint > keypoints_object, keypoints_scene;

detector.detect( gray_image1, keypoints_object );
detector.detect( gray_image2, keypoints_scene );

//-- Step 2: Calculate descriptors (feature vectors)
 SurfDescriptorExtractor extractor;

Mat descriptors_object, descriptors_scene;

extractor.compute( gray_image1, keypoints_object, descriptors_object );
extractor.compute( gray_image2, keypoints_scene, descriptors_scene );

//-- Step 3: Matching descriptor vectors using FLANN matcher
 FlannBasedMatcher matcher;
 std::vector< DMatch > matches;
 matcher.match( descriptors_object, descriptors_scene, matches );

double max_dist = 0; double min_dist = 100;

//-- Quick calculation of max and min distances between keypoints
 for( int i = 0; i < descriptors_object.rows; i++ )
 { double dist = matches[i].distance;
 if( dist < min_dist ) min_dist = dist;
 if( dist > max_dist ) max_dist = dist;
 }

printf("-- Max dist : %f \n", max_dist );
printf("-- Min dist : %f \n", min_dist );

//-- Use only "good" matches (i.e. whose distance is less than 3*min_dist )
 std::vector< DMatch > good_matches;

for( int i = 0; i < descriptors_object.rows; i++ )
 { if( matches[i].distance < 3*min_dist )
 { good_matches.push_back( matches[i]); }
 }
 std::vector< Point2f > obj;
 std::vector< Point2f > scene;

for( int i = 0; i < good_matches.size(); i++ )
 {
 //-- Get the keypoints from the good matches
 obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
 scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
 }

// Find the Homography Matrix
 Mat H = findHomography( obj, scene, CV_RANSAC );
 // Use the Homography Matrix to warp the images
 cv::Mat result;
      int N = image1.rows + image2.rows;
 int M = image1.cols+image2.cols;
 warpPerspective(image1,result,H,cv::Size(N,M));
 cv::Mat half(result,cv::Rect(0,0,image2.rows,image2.cols));
 result.copyTo(half);
 namedWindow("Result",WINDOW_AUTOSIZE);
 imshow( "Result", result);

 imwrite(result_name, result);

 waitKey(0);
 return 0;
}

Also here is a link for some images :: https://www.dropbox.com/sh/ovzkqomxvzw8rww/AAB2DDCrCF6NlCFre7V1Gb6La?dl=0 Thank you so much Lafi

1条回答
走好不送
2楼-- · 2019-02-21 01:58

Problem: Output Image is too large.

Original Code:-

int N = image1.rows + image2.rows;
int M = image1.cols+image2.cols;
warpPerspective(image1,result,H,cv::Size(N,M)); // Too big size.
cv::Mat half(result,cv::Rect(0,0,image2.rows,image2.cols));
result.copyTo(half);
namedWindow("Result",WINDOW_AUTOSIZE);
imshow( "Result", result);

The result image generated is storing as many rows as in image1 and in image2. However, the output image should be equal to dimension of image1 and image2 - dimension of overlapping area.

Another Problem Why are you warping image1. Compute H'(inverse matrix of H) and warp image2 using H'. You should be registering image2 onto image1.

Also, study how warpPerspective works. It finds the area ROI to which the image2 will be warped. Next for each pixel in this ROI area of result(say x,y), it finds the corresponding location say (x',y') in the image2. Note: (x', y') can be real values, like (4.5, 5.4).

Some form of interpolation(probably linear interpolation) is used to find the pixel value for (x, y) in image result.

Next, how to find the size of result matrix. Don't use N,M. Use matrix H' and warp image corners to find where they will end

For transformation matrix, see this wiki and http://planning.cs.uiuc.edu/node99.html. Know the difference between rotation, translational, affine and perspective transformation matrix. Then read the opencv docs here.

You can also read on an earlier answer by me. This answer shows simple algebra to find a crop area. You need to adjust the code for the four corners of both images. Note, image pixels of the new image can go to a negative pixel location as well.

Sample Code(In java):-

import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;

import org.opencv.calib3d.Calib3d;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.DMatch;
import org.opencv.core.KeyPoint;
import org.opencv.core.Mat;
import org.opencv.core.MatOfDMatch;
import org.opencv.core.MatOfKeyPoint;
import org.opencv.core.MatOfPoint2f;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.features2d.DescriptorExtractor;
import org.opencv.features2d.DescriptorMatcher;
import org.opencv.features2d.FeatureDetector;
import org.opencv.features2d.Features2d;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;

public class Driver {

    public static void stitchImages() {
        // Read as grayscale
        Mat grayImage1 = Imgcodecs.imread("current_00000.bmp", 0);
        Mat grayImage2 = Imgcodecs.imread("current_00001.bmp", 0);

        if (grayImage1.dataAddr() == 0 || grayImage2.dataAddr() == 0) {
            System.out.println("Images read unsuccessful.");
            return;
        }

        // Create transformation matrix
        Mat transformMatrix = new Mat(3, 3, CvType.CV_32FC1);

        // -- Step 1: Detect the keypoints using AKAZE Detector
        int minHessian = 400;
        MatOfKeyPoint keypoints1 = new MatOfKeyPoint();
        MatOfKeyPoint keypoints2 = new MatOfKeyPoint();
        FeatureDetector surf = FeatureDetector.create(FeatureDetector.AKAZE);
        surf.detect(grayImage1, keypoints1);
        surf.detect(grayImage2, keypoints2);

        // -- Step 2: Calculate descriptors (feature vectors)
        DescriptorExtractor extractor = DescriptorExtractor.create(DescriptorExtractor.AKAZE);
        Mat descriptors1 = new Mat();
        Mat descriptors2 = new Mat();
        extractor.compute(grayImage1, keypoints1, descriptors1);
        extractor.compute(grayImage2, keypoints2, descriptors2);

        // -- Step 3: Match the keypoints
        DescriptorMatcher matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE);
        MatOfDMatch matches = new MatOfDMatch();
        matcher.match(descriptors1, descriptors2, matches);
        List<DMatch> myList = new LinkedList<>(matches.toList());

        // Filter good matches
        double min_dist = Double.MAX_VALUE;
        Iterator<DMatch> itr = myList.iterator();
        while (itr.hasNext()) {
            DMatch element = itr.next();
            min_dist = Math.min(element.distance, min_dist);
        }

        LinkedList<Point> img1GoodPointsList = new LinkedList<Point>();
        LinkedList<Point> img2GoodPointsList = new LinkedList<Point>();

        List<KeyPoint> keypoints1List = keypoints1.toList();
        List<KeyPoint> keypoints2List = keypoints2.toList();

        itr = myList.iterator();
        while (itr.hasNext()) {
            DMatch dMatch = itr.next();
            if (dMatch.distance >= 5 * min_dist) {
                img1GoodPointsList.addLast(keypoints1List.get(dMatch.queryIdx).pt);
                img2GoodPointsList.addLast(keypoints2List.get(dMatch.trainIdx).pt);
            } else {
                itr.remove();
            }
        }

        matches.fromList(myList);
        Mat outputMid = new Mat();
        System.out.println("best matches size: " + matches.size());
        Features2d.drawMatches(grayImage1, keypoints1, grayImage2, keypoints2, matches, outputMid);
        Imgcodecs.imwrite("outputMid - A - A.jpg", outputMid);

        MatOfPoint2f img1Locations = new MatOfPoint2f();
        img1Locations.fromList(img1GoodPointsList);

        MatOfPoint2f img2Locations = new MatOfPoint2f();
        img2Locations.fromList(img2GoodPointsList);

        // Find the Homography Matrix - Note img2Locations is give first to get
        // inverse directly.
        Mat hg = Calib3d.findHomography(img2Locations, img1Locations, Calib3d.RANSAC, 3);
        System.out.println("hg is: " + hg.dump());

        // Find the location of two corners to which Image2 will warp.
        Size img1Size = grayImage1.size();
        Size img2Size = grayImage2.size();
        System.out.println("Sizes are: " + img1Size + ", " + img2Size);

        // Store location x,y,z for 4 corners
        Mat img2Corners = new Mat(3, 4, CvType.CV_64FC1, new Scalar(0));
        Mat img2CornersWarped = new Mat(3, 4, CvType.CV_64FC1);

        img2Corners.put(0, 0, 0, img2Size.width, 0, img2Size.width);   // x
        img2Corners.put(1, 0, 0, 0, img2Size.height, img2Size.height); // y
        img2Corners.put(2, 0, 1, 1, 1, 1); // z - all 1

        System.out.println("Homography is \n" + hg.dump());
        System.out.println("Corners matrix is \n" + img2Corners.dump());
        Core.gemm(hg, img2Corners, 1, new Mat(), 0, img2CornersWarped);
        System.out.println("img2CornersWarped: " + img2CornersWarped.dump());

        // Find the new size to use
        int minX = 0, minY = 0; // The grayscale1 already has minimum location at 0
        int maxX = 1500, maxY = 1500; // The grayscale1 already has maximum location at 1500(possible 1499, but 1 pixel wont effect)
        double[] xCoordinates = new double[4];
        img2CornersWarped.get(0, 0, xCoordinates);
        double[] yCoordinates = new double[4];
        img2CornersWarped.get(1, 0, yCoordinates);
        for (int c = 0; c < 4; c++) {
            minX = Math.min((int)xCoordinates[c], minX);
            maxX = Math.max((int)xCoordinates[c], maxX);
            minY = Math.min((int)xCoordinates[c], minY);
            maxY = Math.max((int)xCoordinates[c], maxY);
        }
        int rows = (maxX - minX + 1);
        int cols = (maxY - minY + 1);

        // Warp to product final output
        Mat output1 = new Mat(new Size(cols, rows), CvType.CV_8U, new Scalar(0));
        Mat output2 = new Mat(new Size(cols, rows), CvType.CV_8U, new Scalar(0));
        Imgproc.warpPerspective(grayImage1, output1, Mat.eye(new Size(3, 3), CvType.CV_32F), new Size(cols, rows));
        Imgproc.warpPerspective(grayImage2, output2, hg, new Size(cols, rows));
        Mat output = new Mat(new Size(cols, rows), CvType.CV_8U);
        Core.addWeighted(output1, 0.5, output2, 0.5, 0, output);
        Imgcodecs.imwrite("output.jpg", output);
    }

    public static void main(String[] args) {
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
        stitchImages();
    }
}

Change Descriptor

Move to Akaze from Surf. I have seen perfect image registration just from this.

Output Image

This output uses less space and change of descriptor shows perfect registration.

OutputImage

P.S.: IMHO, coding is awesome, but the real treasure is the fundamental knowledge/concepts.

查看更多
登录 后发表回答